

Administration

Investigation of Cracks in Acela Coach Car Brake Discs: Test and Analysis Volume II - Appendices

Offices of Safety and Research and Development Washington, DC 20590

Notice

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) November 30, 2005	2. REPORT TYPE Final	3. DATES COVERED (From - To) April 2005 - November 2005
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER DTFR-53-02-D-00077 and DTFR53-05-D-00205
Investigation of Cracks in Acela Coach Car E Volume II – Appendices	Brake Disc: Test and Analysis	5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Sherrock, Eric T.; Owings, Raymond; Cleme	nzi, Jacinda L.; and Kesler, Kevin	
		5e. TASK NUMBER Task 8 and Task 6, respectively
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
ENSCO, Inc. Applied Technology and Engineering Divisio 5400 Port Royal Road Springfield, VA 22151	n	ENSCO-DOT-FR-05-07
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Department of Transportation		
Federal Railroad Administration		44 SPONSOD/MONITOD/S DEPORT
Office of Research and Development		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
1120 Vermont Avenue, NW - Mail Stop 20		DOT/FRA/ORD-06/07.II
Washington, DC 20590		DO 1/1 10-001/01.11

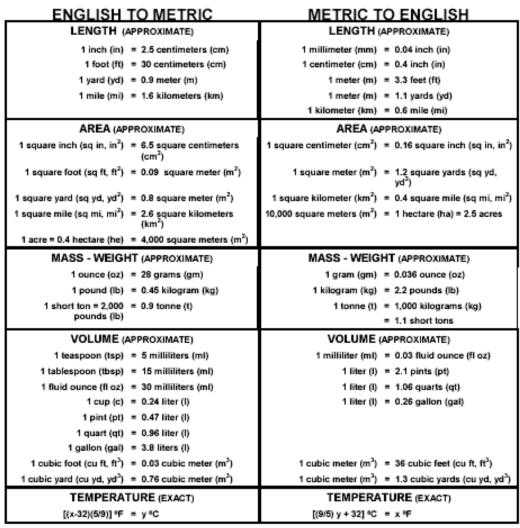
12. DISTRIBUTION / AVAILABILITY STATEMENT

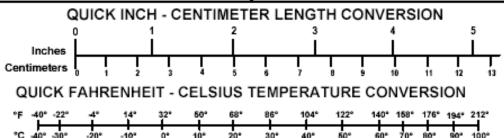
This document is available to the public through the National Technical Information Service, Springfield, VA 22161.

This document is also available on the FRA web site at www.fra.dot.gov.

13. SUPPLEMENTARY NOTES

14. ABSTRACT


In April 2005, visual and laboratory tests identified cracks in the spokes of several brake discs on coach cars within Amtrak's Acela trainsets, the high-speed trainsets operating on the Northeast Corridor. Amtrak halted operations of the Acela fleet until an assessment of the cracked spokes could be made. With the support of the Federal Railroad Administration, Amtrak launched an extensive test program that relied on a cooperative effort between several organizations, including the Northeast Corridor Maintenance Services Company, Bombardier, Alstom Transportation, the manufacturers of the brake system, and ENSCO, Inc. The test program involved a three-phase over-the-road test effort, finite element analyses, and a series of laboratory tests. The first and second phases focused on characterizing the mechanical and thermal load environment associated with WABTEC/SAB-WABCO supplied brake discs employed on the Acela equipment. In the third phase, the Knorr Brake Corporation provided a replacement disc, and an axle equipped with brake discs of this alternative design was also evaluated. This report documents the background of this issue, as well as the development and implementation of the study. The results of the test program, also detailed in this report, allowed for the identification of the Knorr brake disc as an acceptable alternative to the WABTEC/SAB-WABCO supplied disc, enabling Amtrak to return the Acela fleet to service.


15. SUBJECT TERMS

Brake disc, cracked spoke, Acela brake disc, center and outer brake discs, WABTEC/SAB-WABCO supplied brake disc, Knorr brake disc, out-of-plane bending, in-plane bending, analysis and testing of brake discs

16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	Unlimited	693	19b. TELEPHONE NUMBER (include area code)

METRIC/ENGLISH CONVERSION FACTORS

For more exact and or other conversion factors, see NIST Miscellaneous Publication 286, Units of Weights and Measures. Price \$2.50 SD Catalog No. C13 10286

TABLE OF CONTENTS

Appendix A. Test Plans Log (Test Plans Provided on CD-ROM)	A-1
Appendix B. Instrumentation Suite	B-1
Appendix C. Data Descriptions	C-1
Appendix D. Test Documents and Logs	D-1
Appendix E. Finite Element Analysis Results	E-1
Appendix F. Accelerations	F-1
Appendix G. Spoke Strains	G-1
Appendix H. Axle Strains	H-1
Appendix I. Temperature	I-1
Appendix J. Laboratory Testing	J-1
a. Spreader Bar Test	J-2
b. Press-Off Operation.	J-7
c. Quasi-Static Vibration Test	J-41
Appendix K. Brake Support Links	K-1
Appendix L. Daily Handouts (Electronic Copies Provided on CD-ROM)	
Appendix M. Background of the WABTEC/SAB-WABCO Brake Disc	M-1
Technical Definitions	
Acronyms and Abbreviations	

Appendix A. Record of Test Plans

A total of eight test runs were made during the over-the-road portion of the test program. Table A.1 provides a summary of the test runs made.

Table A.1. Summary of Test Plans in Effect During Acela Brake Disc Test Effort

Date of Test	Test Day	Start	End	Speed/Cant Deficiency (Inches)	Test Plan Revision Number
5/14/2005 ⁽¹⁾	1	Washington Wilmington	Wilmington Washington	7	"Combined Test Program to Quantify the Acela Coach Brake Disc Dynamic Load Environment and Monitor Carbody and Truck Motion of Acela Coaches with Simulated Broken Traction Rods," Revision 5, May 11, 2005
5/16/2005	1	Washington	Boston	7	Revision 5.1 Modification 1
5/17/2005	2	Boston	Washington	7	Revision 5.1 Modification 1
5/26/2005	3	Washington	Boston	7	Revision 6.1
5/27/2005	4	Boston	Washington	7	Revision 6.1
6/16/2005	5	Washington New York	New York Washington	7	Revision 8.0
6/17/2005	6	Washington	Boston	9	Revision 8.0
6/18/2005	7	Boston	Washington	9	Revision 8.0

⁽¹⁾ Shakedown Run

Test Plans are available on CD-ROM upon request. Please direct requests to the following:

ENSCO, Inc. ATE Division 5400 Port Royal Road Springfield, VA 22151

Telephone: 703-321-4475

Appendix D provides logs generated during each of these test runs.

Appendix B. Instrumentation Suite

May 16 2005

									MODEL	SERIAL				
CH	SCU	CAB	SC	Name	Description	Location	Range		#	#				
0	0	2	1	CTRSPKF1	Strain Gage	Center Rotor	_				+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
1	1	1	2	CTRSPKF2	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
2	2	3	3	CTRSPKR1	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
3	3	4	4	CTRSPKR2	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
4	4	5		OUTSPKF1	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
5	5	6		OUTSPKF2	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
6	6	7		OUTSPKR1	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
7	7	8		OUTSPKR2	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain
8	8	9		CTRSPKTEMP	Thermocouple, Spoke	Center Rotor	32-1832F	Omega			0-5Vdc	5B47-K-04	ļ ⁻	0.002778 v/deg f
9	9	10		CTRRTRTEMPL	Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
10	10	11		CTRRTRTEMPR	Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
11	11	12		OUTRTRTEMPL	Temperature of Braking Surface, Infrared Sensor	Outer Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
12	12	13		OUTRTRTEMPR	Temperature of Braking Surface, Infrared Sensor	Outer Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
13	13	14		SPEED	Speed; sine from encoder	slip ring	+/-5v	michigan scientific			+/-5Vdc	5B41-02		
15	15			SPARE	spare							5B41-02		
14	14	15	5	AXLELAT	Lateral Acceleration, Axle Mounted	Axle	+/-200g	Silicon Design	2410-200	07133	+/-5Vdc	5B41-02		19.7 mV/G
	_		_	1000417				10.00	.=	0400444		- D 44 00		0.55 \\
16	0	1		LBOXLAT	Lateral Acceleration, Axle	Axle Box Left	+/-200g	Kistler	8786A200r					9.57 mV/G
17	1	2	7	LBOXVERT	Vertical Acceleration, Axle	Axle Box Left	+/-500g	Kistler			+/-2.5Vdc			10.25 mV/G
18	2	1	9	RBOXLAT	Lateral Acceleration, Axle	Axle Box Right		Silicon Design	2430-200	486	+/-5Vdc	5B41-02	Х	50 mV/G
19	3	2	8	RBOXVERT	Vertical Acceleration, Axle	Axle Box Right	0	Silicon Design	2430-200	486	+/-5Vdc	5B41-02	Z	50 mV/G
20	4	1	10	CTRCALPLAT	Lateral Acceleration, Caliper, Near Pad		+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
21	5	2	11		· · · · · · · · · · · · · · · · · · ·		+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
22	6	3	12		Longitudinal Acceleration, Caliper, Near Pad		+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
23	7	1		CTRCALALAT	Lateral Acceleration, Caliper, Near Actuator		+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G
24	8	3			Vertical Acceleration, Caliper, Near Actuator		+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G
25	9	2			Longitudinal Acceleration, Caliper, Near Actuator		+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G
26	10	1		OUTCALPLAT	Lateral Acceleration, Caliper, Near Pad	Outer Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
27	11	2			Vertical Acceleration, Caliper, Near Pad	Outer Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
28	12	3			Longitudinal Acceleration, Caliper, Near Pad	Outer Caliper	U	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
29	13	30		PIPEPRESS	Brake Pipe Pressure	0 - 1 - 0 - 1	0-200 psi		px41c1-20(148187	0-2.5V	5B41-07		0.012508 V/PSI
30	14	31		CYLPRESS	Brake Cylinder Pressure	Center Caliper	0-200 psi	•	px41c1-20(0-2.5V	5B41-07		0.0125 V/PSI
31	15	32		PARKPRESS	Brake Park Pressure	Center Caliper	0-200 psi	Omega	px41c1-20(148201	0-2.5V	5B41-07		0.012498 V/PSI

May 17 2005 Ver 9

									MODEL	SERIAL						
CH	SCU	CAB	SC	Name	Description	Location	Range		#	#					inv N s	shunt
0	0	2	1	CTRSPKF1	Strain Gage	Center Rotor	. 3				+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682 uStrain max
1	1	1	2	CTRSPKF2	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682 uStrain max
2	2	3	3	CTRSPKR1	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682 uStrain max
3	3	4	4	CTRSPKR2	Strain Gage	Center Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682 uStrain max
4	4	5		OUTSPKF1	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682
5	5	6		OUTSPKF2	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682
6	6	7		OUTSPKR1	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682
7	7	8		OUTSPKR2	Strain Gage	Outer Rotor					+/-5Vdc	5B38-02	gf=2.03	5911.33 uStrain		2955.682
8	8	9		CTRDSKTEMP	Thermocouple, Spoke	Center Rotor	32-1832F	Omega			0-5Vdc	5B47-K-04	1	0.002778 v/deg f	360	1800
9	9	10		CTRRTRTEMPL	Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f	320	1600
10	10	11		CTRRTRTEMPR	Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f	320	1600
11	11	12		OUTRTRTEMPL	Temperature of Braking Surface, Infrared Sensor	Outer Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f	320	1600
12	12	13		OUTRTRTEMPR	Temperature of Braking Surface, Infrared Sensor	Outer Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f	320	1600
13	13	14		SPEED	Speed; sine from encoder	slip ring	+/-5v	michigan scientific			+/-5Vdc	5B41-02				
15	15			SPARE	spare							5B41-02				
14	14	15	5	AXLELAT	Lateral Acceleration, Axle Mounted	Axle	+/-200g	Silicon Design	2410-200	07133	+/-5Vdc	5B41-02		19.7 mV/G	0.0508	
16	0	1	6	LBOXLAT	Lateral Acceleration, Axle	Axle Box Left	+/-250g	PCB	J353B01	95259	+/-2.5Vdc	5B41 02		10 mV/G	0.1000	
17	1	2	7	LBOXVERT	Vertical Acceleration, Axle	Axle Box Left	+/-250g +/-250g	PCB	J353B01	95604	+/-2.5Vdc +/-2.5Vdc			10 mV/G	0.1000	
18	2	1	9	RBOXLAT	Lateral Acceleration, Axle	Axle Box Right	+/-200g	Silicon Design	2430-200	486	+/-5Vdc	5B41-02	v	50 mV/G	0.0200	
19	3	2	8	RBOXVERT	Vertical Acceleration, Axle	Axle Box Right	+/-200g	Silicon Design	2430-200	486	+/-5Vdc	5B41-02		50 mV/G	0.0200	
20	4	1	10	CTRCALPLAT	Lateral Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02	_	50 mV/G	0.0200	
21	5	2	11	CTRCALPVERT	Vertical Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G	0.0200	
22	6	3	12		Longitudinal Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G	0.0200	
23	7	1		CTRCALALAT	Lateral Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G	0.0200	
24	8	3			Vertical Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G	0.0200	
25	9	2			Longitudinal Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0006	+/-5Vdc	5B41-02		50 mV/G	0.0200	
26	10	1		OUTCALPLAT	Lateral Acceleration, Caliper, Near Pad	Outer Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G	0.0200	
27	11	2			Vertical Acceleration, Caliper, Near Pad	Outer Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G	0.0200	
28	12	3			Longitudinal Acceleration, Caliper, Near Pad	Outer Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G	0.0200	
29	13	30		PIPEPRESS	Brake Pipe Pressure		0-200 psi		px41c1-20(148187	0-2.5V	5B41-07		0.012508 V/PSI	79.9464	
30	14	31		CYLPRESS	Brake Cylinder Pressure	Center Caliper	0-200 psi		px41c1-20(0-2.5V	5B41-07		0.0125 V/PSI	80.0000	
31	15	32		PARKPRESS	Brake Park Pressure	Center Caliper	0-200 psi	•	px41c1-20(0-2.5V	5B41-07		0.012498 V/PSI	80.0160	
						[- 3 -								

^{*} Note - channels 1 and 2 on SCU1 were swapped 5/14/2005 after the test run

May 25 2005 Ver 13

mike data

						iala - II I							MODEL	OFDIAL				
_	SLIP collec HIGH CH SCU File CAB S C RING cable SP Name								5		-		MODEL "	SERIAL				
) File		SC	RINGO	able	SP		Description	Location	Range		#	#	. / 5) / 1	5D00.00		5044.000040.00
(0	1	2	1	1			CTRSPK6F1	Strain Gage	Center Rotor R6					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
1	1	2	1	2	1		_	CTRSPK6F2	Strain Gage	Center Rotor R6					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
2	2	3	3	3	1	8	6	CTRSPK6R1	Strain Gage	Center Rotor R6					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
3	3	4	4	4	1		7	CTRSPK6R2	Strain Gage	Center Rotor R6					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
4	4	5			2	9	8	CTRSPK3R1	Strain Gage	Center Rotor R3					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
5	5	6			2		9	CTRSPK3R2	Strain Gage	Center Rotor R3					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
6	6	7			2	10	10		Strain Gage	axle ; center Rot					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
7	7	8			2			AXLECSPK3	Strain Gage	axle ; center Rot					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
8	8	9			2	11		AXLEOSPK6	Strain Gage	Axle: 1/4					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
(9	10			2		13	AXLEOSPK3	Strain Gage	Axle: 1/4					+/-5Vdc	5B38-02	gf=2.03	5911.330049 uStrain
1	0 10	11	9		1	12		CTRDSKTEMP	Thermocouple, Rotor	Center Rotor	32-1832F				0-5Vdc	5B47-K-04	ļ	0.002777778 v/deg f
1	1 11	12	10						Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
1	2 12	13	11					CTRRTRTEMPR	Temperature of Braking Surface, Infrared Sensor	Center Rotor	0-1600F	Omega			0-5Vdc	5B41-02		0.003125 v/deg f
1	3 13	14	14			4	14	SINE	Speed; sine from encoder	slip ring	+/-5v	michigan scientific			+/-5Vdc	5B41-02		
1	4 14	16	15	5		5	4	AXLELAT	Lateral Acceleration, Axle Mounted	Axle	+/-200g	Silicon Design	2410-200	07133	+/-5Vdc	5B41-02		19.7 mV/G
1	5 15							BAD								5B41-02		
1	6 0	17	1	6			1	LBOXLAT	Lateral Acceleration, Axle	Axle Box Left	+/-250g	PCB	J353B01	95259	+/-2.5Vdc	5B41-02		10 mV/G
1	7 1	18	2	7			0	LBOXVERT	Vertical Acceleration, Axle	Axle Box Left	+/-250g	PCB	J353B01	95604	+/-2.5Vdc	5B41-02		10 mV/G
1	8 2	19	1	9			3	RBOXLAT	Lateral Acceleration, Axle	Axle Box Right	+/-250g	PCB	J353B01	97687	+/-2.5Vdc	5B41-02		10 mV/G
1	9 3	20	2	8			2	RBOXVERT	Vertical Acceleration, Axle	Axle Box Right	+/-250g	PCB	J353B01	97688	+/-2.5Vdc	5B41-02		10 mV/G
2	0 4	21	1	10		14		CTRCALPLAT	Lateral Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
2	1 5	22	2	11		13		CTRCALPVERT	Vertical Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
2	2 6	23	3	12				CTRCALPLONG	Longitudinal Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Design	2440-100	0005	+/-5Vdc	5B41-02		50 mV/G
2	3 7	24	1					CTRCALALAT	Lateral Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
2	4 8	25	3					CTRCALAVERT	Vertical Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
2	5 9	26	2					CTRCALALONG	Longitudinal Acceleration, Caliper, Near Actuator	Center Caliper	+/-100g	Silicon Design	2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
2	6 10	27				6	5	AXLELAT2	Lateral Acceleration, Axle Mounted	Axle	+/-500g	Dytran	3030b4	12361	+/-5Vdc	5B41-02		10.1 mV/G
2	7 11	28					15	SYNC	Synchronization signal	signal generator	+/-4V	0.5hz to 5Hz 5Secs	s tri		+/-5Vdc	5B41-02		volts
2	B 12	29				7		AXLELAT3	Lateral Acceleration, Axle Mounted	Axle	+/-500g	Endeveco	7264b-500		+/-5Vdc	5B41-02	10v ex	0.8 mV/G
2	9 13	30	30			15		PIPEPRESS	Brake Pipe Pressure		0-200 psi		px41c1-20(148187	0-2.5V	5B41-07		0.012508375 V/PSI
3	0 14	31	31					CYLPRESS	Brake Cylinder Pressure	Center Caliper	0-200 psi		px41c1-20(148202	0-2.5V	5B41-07		0.0125 V/PSI
3	1 15	32	32					PARKPRESS	Brake Park Pressure	Center Caliper	0-200 psi	Omega	px41c1-20(148201	0-2.5V	5B41-07		0.0124975 V/PSI

CHANNEL 14 AND 15 ARE SWAPPED IN DATA FILE WITH CHANNEL 14 IS CALCULATED SPEED

june 14 2005 Ver 22

PIN1=NO OFFSET PIN3=OFFSET

				(display										FINS-OFF	OLI
		VISHAY	ORG	`	alopidy	AXLE-					MODEL	SERIAL			JUMPERS	
СН	SCU	ECTRON	CAB	CABLE		SLIPRING	3 Name	Description	Location	Range	#	#			SCU	
0	0	na	15	0,1022	3-2	1-1	AXLELAT1-1	Lateral Acceleration, Axle Mounted	Axle	+/-200g	Silicon Des 2410-200	07133	+/-5Vdc	5B41-02	NO OFF	19.7 mV/G
1	1	na	x pl		3-3	1	TRFLLAT1	Lateral Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	197.10 mV/G
2	2	na	z pu		3-3	1	TRFLVERT1	Vertical Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	199.00 mV/G
3	3	na	y pr		3-3	1	TRFLLONG1	Longitudinal Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	197.10 mV/G
4	4	na	x pr		4-3	1	BRMTLAT1	Lateral Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	197.00 mV/G
5	5	na	z pu		4-3	1	BRMTVERT1	Vertical Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	198.10 mV/G
6	6	na	- 1			1	SINE1	Speed; sine from encoder	slip ring 1	+/-10Vdc			+/-10Vdc		NO	1
7	7	na				2	SINE2	Speed; sine from encoder	slip ring 3	+/-10Vdc	michigan scientific		+/-10Vdc		NO	1
8	8	na	y pf		4-3	1	BRMTLONG1	Longitudinal Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	196.70 mV/G
9	9	na	ĺ			1	CTRCALPLAT1	Lateral Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Des 2440-100	0005	+/-5Vdc	5B41-02	NO OFF	50 mV/G
10	10	na	2			1	CTRCALPVERT1	Vertical Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Des 2440-100	0005	+/-5Vdc	5B41-02	NO OFF	50 mV/G
11	11	na	3			1	CTRCALPLONG1	Longitudinal Acceleration, Caliper, Near Pad	Center Caliper	+/-100g	Silicon Des 2440-100	0005	+/-5Vdc	5B41-02	NO OFF	50 mV/G
12	12	na	31			1	CYLPRESS1	Brake Cylinder Pressure	Center Caliper	0-200 psi	Omega px41c1-200g1	148202	0-2.5V	5B41-07	NO OFF	0.0125 V/PSI
13	13	na	9			1-1	CTRDSKTEMP1	Thermocouple, Rotor	Center Rotor	32-1832F	Omega		0-5Vdc	5B47-K-04	4 OFF	0.002778 v/deg f
14	14	na					SYNC	Synchronization signal	signal generator	+/-4V	0.5hz to 5Hz 5Secs tri		+/-5Vdc	5B41-02	NO	1
15	15	na		AXLE2-14	1-2	2-4	AXLELAT2	Lateral Acceleration, Axle Mounted	Axle	+/-500g	VibraMetric 7002hg2k	0902	+/-5Vdc		NO	9.5 mV/G
	_						TD5:T0									
16	0 1	na	x pl		1-3	2	TRFLLAT2	Lateral Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0027	+/-5Vdc	5B41-02	NO OFF	196.50 mV/G
17		na	z pu		1-3	2	TRFLUERT2	Vertical Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0027 0027	+/-5Vdc	5B41-02	NO OFF	198.40 mV/G
18	2	na	y pr		1-3	2	TRFLLONG2	Longitudinal Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025		+/-5Vdc	5B41-02	NO OFF	196.90 mV/G
19 20	3 4	na	x pr		2-3 2-3	2	BRMTLAT2 BRMTVERT2	Lateral Acceleration, BRAKE MOUNTING TUBE Vertical Acceleration, BRAKE MOUNTING TUBE		+/-25g +/-25g	Silicon Des 2440-025 Silicon Des 2440-025	0029 0029	+/-5Vdc +/-5Vdc	5B41-02 5B41-02	NO OFF NO OFF	197.00 mV/G 196.90 mV/G
21	5	na na	z pu		2-3	2	BRMTLONG2	Longitudinal Acceleration, BRAKE MOUNTING TUBE		+/-25g +/-25g	Silicon Des 2440-025	0029	+/-5Vdc	5B41-02 5B41-02	NO OFF	196.90 mV/G
22	6	na	y pf 1		2-3	2	CTRCALPLAT2	Lateral Acceleration, Caliper, Near Pad	Center Caliper	+/-25g +/-100a	Silicon Des 2440-100	0029	+/-5Vdc +/-5Vdc	5B41-02 5B41-02	NO OFF	50 mV/G
23	7	na	2			2		Vertical Acceleration, Caliper, Near Pad	Center Caliper	+/-100g +/-100g	Silicon Des 2440-100	0012	+/-5Vdc	5B41-02		50 mV/G
24	8	na	3			2		Longitudinal Acceleration, Caliper, Near Pad	Center Caliper	+/-100g +/-100g	Silicon Des 2440-100	0012	+/-5Vdc	5B41-02	NO OFF	50 mV/G
25	9	na	3	AXLE2-15		2-4	CTRDSKTEMP2	Thermocouple, Rotor	Center Rotor	32-1832F	Omega	0012	0-5Vdc	5B47-K-04		0.002778 v/deg f
26	10	na		AXLLZ-13		2	CYLPRESS2	Brake Cylinder Pressure	Center Caliper	0-200 psi	Omega px41c1-200g10)t	0-3.4dc 0-2.5V	5B41-07		0.0125 V/PSI
27	11	1-1 1	2	AXLE1-1		1-1	CTRSPK6F1	Strain Gage	Center Rotor S6		20gu px 1.01 200g 1.		+/-5Vdc	2120B	NO	5911.33 uStrain
28	12	1-2 2	1	AXLE1-2		1-1	CTRSPK6F2	Strain Gage	Center Rotor S6				+/-5Vdc	2120B	NO	5911.33 uStrain
29	13	1-3 3	3	AXLE1-3	1-1	1-1	CTRSPK6R1	Strain Gage	Center Rotor S6				+/-5Vdc	2120B	NO	5911.33 uStrain
30	14	1-4 4	4	AXLE1-4	1-1	1-1	CTRSPK6R2	Strain Gage	Center Rotor S6				+/-5Vdc	2120B	NO	5911.33 uStrain
31	15						BAD							5B41-02	NO	
32	0	1-5 5		AXLE1-5	1-1	1-2	CTRSPK3R1	Strain Gage	Center Rotor S3				+/-5Vdc	2120B	NO	5911.33 uStrain
33	1	1-6 6		AXLE1-6	1-1	1-2	CTRSPK3R2	Strain Gage	Center Rotor S3				+/-5Vdc	2120B	NO	5911.33 uStrain
34	2	2-1		AXLE1-7	2-1	1-2	AXLECSPK6	Strain Gage	axle ; center Ro				+/-5Vdc	2120B	NO	5911.33 uStrain
35	3	2-2		AXLE1-8	2-1	1-2	AXLECSPK3	Strain Gage	axle ; center Ro	i			+/-5Vdc	2120B	NO	5911.33 uStrain
36	4	2-3		AXLE1-9	2-1	1-2	AXLEOSPK6	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	5911.33 uStrain
37	5	2-4		AXLE1-10	2-1	1-2	AXLEOSPK3	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	5911.33 uStrain
38 39	6 7	2-5 2-6				1	AXLE1LLINK	Strain Gage	Center Caliper				+/-5Vdc	2120B 2120B	NO NO	5911.33 uStrain
39 40	8	2-6 3-1		AXLE2-1	3-1	1 2-3	AXLE1RLINK CTR2SPK6R1	Strain Gage	Center Caliper Center Rotor S6	(001)			+/-5Vdc +/-5Vdc	2120B 2120B	NO NO	5911.33 uStrain
41	9	3-1		AXLE2-1	3-1	2-3	CTR2SPK6R2	Strain Gage Strain Gage	Center Rotor S6				+/-5Vdc +/-5Vdc	2120B 2120B	NO	5911.33 uStrain 5911.33 uStrain
42	10	3-3		AXLE2-2	3-1	2-3	CTR2SPK3R1	Strain Gage	Center Rotor S1				+/-5Vdc	2120B	NO	5911.33 uStrain
43	11	3-4		AXLE2-3	3-1	2-3	CTR2SPK3R2	Strain Gage	Center Rotor S1				+/-5Vdc	2120B	NO	5911.33 uStrain
44	12	3-5		AXLE2-5	J-1	2-3	CTR2SPK6 4	Strain Gage	Center Rotor S4				+/-5Vdc	2120B	NO	5911.33 uStrain
45	13	3-6		AXLE2-6		2-3	CTR2SPK6 5	Strain Gage	Center Rotor S4				+/-5Vdc	2120B	NO	5911.33 uStrain
46	14	3-7		AXLE2-7		2-3	CTR2SPK4 6	Strain Gage	Center Rotor S4				+/-5Vdc	2120B	NO	5911.33 uStrain
47	15	4-1		AXLE2-8	4-1	2-4	AXLE2CSPK6	Strain Gage	axle ; center Ro				+/-5Vdc	2120B	NO	5911.33 uStrain
								· ·	-,							
48	0	4-2		AXLE2-9	4-1	2-4	AXLE2CSPK3	Strain Gage	axle ; center Ro				+/-5Vdc	2120B	NO	5911.33 uStrain
49	1	4-3		AXLE2-12		2-4	AXLE2CSPK6+90		axle ; center Ro				+/-5Vdc	2120B	NO	5911.33 uStrain
50	2	4-4		AXLE2-13		2-4	AXLE2CSPK6-90		axle ; center Ro	t			+/-5Vdc	2120B	NO	5911.33 uStrain
51	3	4-5		AXLE2-10	4-1	2-4	AXLE2OSPK6	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	5911.33 uStrain
52	4	4-5		AXLE2-11	4-1	2-4	AXLE2OSPK3	Strain Gage	Axle: 1/4	. / 400	DOD /*****	05050	+/-5Vdc	2120B	NO	5911.33 uStrain
53	5	4-6			3-2	1	LBOXLAT1	Lateral Acceleration, Axle	Axle Box Left	+/-100g	PCB J353B01	95259	+/-2.5Vdc		NA	10 mV/G
54	6	na			4-2	1	LBOXVERT1	Vertical Acceleration, Axle	Axle Box Left	+/-250g	PCB J353B01	95604	+/-2.5Vdc		NA	10 mV/G
55 56	7 8	na			3-2	1 1	RBOXLAT1	Lateral Acceleration, Axle	Axle Box Right	+/-100g	PCB J353B01	97687	+/-2.5Vdc		NA	10 mV/G
90	ŏ	na			4-2	1	RBOXVERT1	Vertical Acceleration, Axle	Axle Box Right	+/-250g	PCB J353B01	97688	+/-2.5Vdc		NA	10 mV/G

june 14 2005 Ver 22

PIN1=NO OFFSET PIN3=OFFSET

					display	,										
		VISHAY	ORG		,	AXLE-						MODEL	SERIAL		JUMPERS	
CH	SCU	ECTRON	CAB	CABLE		SLIPRIN	G Name	Description	Location	Range		#	#		SCU	
57	9	na			1-2	2	LBOXLAT2	Lateral Acceleration, Axle	Axle Box Left	+/-100g	PCB	J353B31	97692	+/-2.5Vdc	NA	10 mV/G
58	10	na			2-2	2	LBOXVERT2	Vertical Acceleration, Axle	Axle Box Left	+/-250g	PCB	J353B01	95603	+/-2.5Vdc	NA	10 mV/G
59	11	na			1-2	2	RBOXLAT2	Lateral Acceleration, Axle	Axle Box Right	+/-100g	PCB	J353B31	97690	+/-2.5Vdc	NA	10 mV/G
60	12	na			2-2	2	RBOXVERT2	Vertical Acceleration, Axle	Axle Box Right	+/-250g	PCB	J353B01	95258	+/-2.5Vdc	NA	10 mV/G
61	13	na			3-2	1-2	AXLELAT1-2	Lateral Acceleration, Axle Mounted	Axle	+/-500g	VibraMet	ric 7002hg2k	0867	+/-5Vdc	NA	9.9 mV/G
62	14	na			3-2	1-2	AXLELAT1-3	Lateral Acceleration, Axle Mounted	Axle	+/-500g	Endevec	7264b-500		+/-5Vdc	NA	10 mV/G
63	15	na				1	AXLE1LLONG	Long Acc Axle		+/-100g	PCB	J353B31	97691	+/-2.5Vdc	NA	10 mV/G
****							SPEED1	CALCULATED SPEED FOR SINE1								
***AN	Y ADD	ITIONAL CA	LCULAT	ED CHANN	ELS T	O BE ADD	ED AFTER THE AD	CHANNELS; THIS IS AND EXAMPLE								

PIN1=NO OFFSET PIN3=OFFSET

				(display										FINS-OFF	SEI
		VISHAY	ORG			AXLE-					MODEL	SERIAL			JUMPERS	
CH	SCU	ECTRON	CAB	CABLE		SLIPRING	Name	Description	Location	Range	#	#			SCU	
0	0	na	15		3-2	1-1	AXLELAT1-1	Lateral Acceleration, Axle Mounted	Axle	+/-200g	Silicon Des 2410-200	07133	+/-5Vdc	5B41-02	NO OFF	19.7 mV/G
1	1	na	x pl		3-3	1	TRFLLAT1	Lateral Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	197.10 mV/G
2	2	na	z pu		3-3	1	TRFLVERT1	Vertical Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	199.00 mV/G
3	3	na	y pr		3-3	1	TRFLLONG1	Longitudinal Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0026	+/-5Vdc	5B41-02	NO OFF	197.10 mV/G
4	4	na	x pr		4-3	1	BRMTLAT1	Lateral Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	197.00 mV/G
5	5	na	z pu		4-3	1	BRMTVERT1	Vertical Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	198.10 mV/G
6	6	na				1	SINE1	Speed; sine from encoder	slip ring 1		michigan scientific		+/-10Vdc		NO	1
7	7	na				2	SINE2	Speed; sine from encoder	slip ring 3	+/-10Vdc			+/-10Vdc		NO	1
8	8 9	na	y pf		4-3	1	BRMTLONG1	Longitudinal Acceleration, BRAKE MOUNTING TUBE	0	+/-25g	Silicon Des 2440-025	0028	+/-5Vdc	5B41-02	NO OFF	196.70 mV/G
9 10	9 10	na na	1 2			1 1	CTRCALPLAT1 CTRCALPVERT1	Lateral Acceleration, Caliper, Near Pad Vertical Acceleration, Caliper, Near Pad	Center Caliper Center Caliper		Silicon Des 2440-100 Silicon Des 2440-100	0005 0005	+/-5Vdc +/-5Vdc	5B41-02 5B41-02	NO OFF NO OFF	50 mV/G 50 mV/G
11	11	na	3			1		Longitudinal Acceleration, Caliper, Near Pad	Center Caliper	•	Silicon Des 2440-100	0005	+/-5Vdc	5B41-02	NO OFF	50 mV/G
12	12	na	31			1	CYLPRESS1	Brake Cylinder Pressure	Center Caliper			148202	0-2.5V	5B41-02		0.0125 V/PSI
13	13	na	9			1-1		Thermocouple, Rotor	Center Rotor			140202	0-2.5V 0-5Vdc	5B47-K-0		0.002778 v/deg f
14	14	na	J				SYNC	Synchronization signal	signal generate		0.5hz to 5Hz 5Secs tri		+/-5Vdc	5B41-02		1
15	15	na		AXLE2-14	1-2	2-4	AXLELAT2	Lateral Acceleration, Axle Mounted	Axle	+/-500g	VibraMetric 7002hg2k	0902	+/-5Vdc	0541 02	NO	9.5 mV/G
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			, , , , , , , , , , , , , , , , , , , ,	Zatorary toooloration, y the mounted	7 0.10	· / 000g	ribramouit rooziigzii	0002	., 0.40			0.0
16	0	na	x pl		1-3	2	TRFLLAT2	Lateral Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0027	+/-5Vdc	5B41-02	NO OFF	196.50 mV/G
17	1	na	z pu		1-3	2	TRFLVERT2	Vertical Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0027	+/-5Vdc	5B41-02	NO OFF	198.40 mV/G
18	2	na	y pr		1-3	2	TRFLLONG2	Longitudinal Acceleration, TRUCK FRAME LEFT		+/-25g	Silicon Des 2440-025	0027	+/-5Vdc	5B41-02	NO OFF	196.90 mV/G
19	3	na	x pr		2-3	2	BRMTLAT2	Lateral Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0029	+/-5Vdc	5B41-02	NO OFF	197.00 mV/G
20	4	na	z pu		2-3	2	BRMTVERT2	Vertical Acceleration, BRAKE MOUNTING TUBE		+/-25g	Silicon Des 2440-025	0029	+/-5Vdc	5B41-02	NO OFF	196.90 mV/G
21	5	na	y pf		2-3	2	BRMTLONG2	Longitudinal Acceleration, BRAKE MOUNTING TUBE	0	+/-25g	Silicon Des 2440-025	0029	+/-5Vdc	5B41-02	NO OFF	196.90 mV/G
22	6 7	na	1 2			2 2	CTRCALPLAT2	Lateral Acceleration, Caliper, Near Pad	Center Caliper	•	Silicon Des 2440-100	0012	+/-5Vdc	5B41-02	NO OFF	50 mV/G
23 24	8	na	3			2		Vertical Acceleration, Caliper, Near Pad Longitudinal Acceleration, Caliper, Near Pad	Center Caliper Center Caliper		Silicon Des 2440-100	0012 0012	+/-5Vdc +/-5Vdc	5B41-02 5B41-02	NO OFF NO OFF	50 mV/G 50 mV/G
25	9	na na	3	AXLE2-15		2-4	CTRCALFLONG2 CTRDSKTEMP2	Thermocouple, Rotor	Center Rotor		Silicon Des 2440-100 Omega	0012	0-5Vdc	5B47-K-0		0.002778 v/dea f
26	10	na		AXLLZ-13		2	CYLPRESS2	Brake Cylinder Pressure	Center Caliper				0-3.5V	5B41-07	NO OFF	0.0125 V/PSI
27	11	1-1	2	AXLE1-1		1-1	CTRSPK6F1	Strain Gage	Center Rotor S		omega px+101 200g10t		+/-5Vdc	2120B	NO	4000 uStrain
28	12	1-2	1	AXLE1-2		1-1	CTRSPK6F2	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
29	13	1-7	3	AXLE1-3	1-1	1-1	CTRSPK6R1	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
30	14	1-8	4	AXLE1-4	1-1	1-1	CTRSPK6R2	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
31	15						BAD							5B41-02	NO	
32	0	1-5		AXLE1-5	1-1	1-2	CTRSPK3R1	Strain Gage	Center Rotor S	22			+/-5Vdc	2120B	NO	4000 uStrain
33	1	1-6		AXLE1-5 AXLE1-6	1-1	1-2	CTRSPK3R2	Strain Gage	Center Rotor S				+/-5Vdc +/-5Vdc	2120B 2120B	NO	4000 uStrain
34	2	2-1		AXLE1-7	2-1	1-2	AXLECSPK6	Strain Gage	axle ; center R				+/-5Vdc	2120B	NO	2000 uStrain
35	3	2-2		AXLE1-8	2-1	1-2	AXLECSPK3	Strain Gage	axle ; center R				+/-5Vdc	2120B	NO	2000 uStrain
36	4	2-3		AXLE1-9	2-1	1-2	AXLEOSPK6	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	2000 uStrain
37	5	2-4		AXLE1-10	2-1	1-2	AXLEOSPK3	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	2000 uStrain
38	6	2-5				1	AXLE1LLINK	Strain Gage	Center Caliper				+/-5Vdc	2120B	NO	3000 uStrain
39	7	2-6				1	AXLE1RLINK	Strain Gage	Center Caliper				+/-5Vdc	2120B	NO	3000 uStrain
40	8	3-1		AXLE2-1	3-1	2-3	CTR2SPK6R1	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
41	9	3-2		AXLE2-2	3-1	2-3	CTR2SPK6R2	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
42	10	3-3		AXLE2-3	3-1	2-3	CTR2SPK3R1	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
43	11	3-4		AXLE2-4	3-1	2-3	CTR2SPK3R2	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
44	12	3-5		AXLE2-5		2-3	CTR2SPK6_4	Strain Gage	Center Rotor S	. ,			+/-5Vdc	2120B	NO	4000 uStrain
45	13	3-6		AXLE2-6		2-3	CTR2SPK6_5	Strain Gage	Center Rotor S				+/-5Vdc	2120B	NO	4000 uStrain
46 47	14 15	3-7 4-1		AXLE2-7 AXLE2-8	4-1	2-3 2-4	CTR2SPK4_6 AXLE2CSPK6	Strain Gage Strain Gage	Center Rotor S axle; center R				+/-5Vdc +/-5Vdc	2120B 2120B	NO NO	4000 uStrain 2000 uStrain
47	15	4-1		AALEZ-0	4-1	2-4	AALEZUSPRO	Strain Gage	axie, cerilei K	.01			+/-5Vuc	21200	NO	2000 uStrain
48	0	4-2		AXLE2-9	4-1	2-4	AXLE2CSPK3	Strain Gage	axle ; center R	ot			+/-5Vdc	2120B	NO	2000 uStrain
49	1	4-3		AXLE2-12		2-4	AXLE2CSPK6+90		axle ; center R				+/-5Vdc	2120B	NO	2000 uStrain
50	2	4-4		AXLE2-13	4-1	2-4	AXLE2CSPK6-90		axle ; center R	ot			+/-5Vdc	2120B	NO	2000 uStrain
51	3	4-5		AXLE2-10	4-1	2-4	AXLE2OSPK6	Strain Gage	Axle: 1/4				+/-5Vdc	2120B	NO	2000 uStrain
52	4	4-6		AXLE2-11	4-1	2-4	AXLE2OSPK3	Strain Gage	Axle: 1/4	. / 400	DOD 1050D04	05050	+/-5Vdc	2120B	NO	2000 uStrain
53	5	na			3-2	1	LBOXLAT1	Lateral Acceleration, Axle	Axle Box Left		PCB J353B01	95259	+/-2.5Vdc		NA	10 mV/G
54	6 7	na			4-2	1 1	LBOXVERT1	Vertical Acceleration, Axle	Axle Box Left		PCB J353B01 PCB J353B01	95604 97687	+/-2.5Vdc		NA	10 mV/G
55 56	8	na na			3-2 4-2	1	RBOXLAT1 RBOXVERT1	Lateral Acceleration, Axle Vertical Acceleration, Axle	Axle Box Right Axle Box Right		PCB J353B01 PCB J353B01	97687 97688	+/-2.5Vdc +/-2.5Vdc		NA NA	10 mV/G 10 mV/G
50	U	IIa			4-2	'	NDOVATULI	vertical Acceleration, Axic	AND DUX RIGHT	· //-250g	1 00 000001	31000	-7-2.5VUC		INM	10 1111/13

june 17 2005 Ver 25

PIN1=NO OFFSET	
PIN3=OFFSET	

					display			
		VISHAY	ORG			AXLE-		
CH	SCU	ECTRON	CAB	CABLE		SLIPRING	Name	Description
57	9	na			1-2	2	LBOXLAT2	Lateral Acceleration, Axle
58	10	na			2-2	2	LBOXVERT2	Vertical Acceleration, Axle
59	11	na			1-2	2	RBOXLAT2	Lateral Acceleration, Axle
60	12	na			2-2	2	RBOXVERT2	Vertical Acceleration, Axle
61	13	na			3-2	1-2	AXLELAT1-2	Lateral Acceleration, Axle Mounted
62	14	na			3-2	1-2	AXLELAT1-3	Lateral Acceleration, Axle Mounted
63	15	na				1	AXLE1LLONG	Long Acc Axle
****							SPEED1	CALCULATED SPEED FOR SINE1

^{***}ANY ADDITIONAL CALCULATED CHANNELS TO BE ADDED AFTER THE AD CHANNELS; THIS IS AND EXAMPLE

			MODEL	SERIAL		JUMPERS	
Location	Range		#	#		SCU	
Axle Box Left	+/-100g	PCB	J353B31	97692	+/-2.5Vdc	NA	10 mV/G
Axle Box Left	+/-250g	PCB	J353B01	95603	+/-2.5Vdc	NA	10 mV/G
Axle Box Right	+/-100g	PCB	J353B31	97690	+/-2.5Vdc	NA	10 mV/G
Axle Box Right	+/-250g	PCB	J353B01	95258	+/-2.5Vdc	NA	10 mV/G
Axle	+/-500g	VibraMetric	7002hg2k	0867	+/-5Vdc	NA 9	9.9 mV/G
Axle	+/-500g	Endeveco	7264b-500		+/-5Vdc	NA	10 mV/G
	+/-100g	PCB	J353B31	97691	+/-2.5Vdc	NA	10 mV/G

Calibration Certificates
and Specification Sheets
for Sensors Used
During ENSCO's
Acela Brake Disc Test

CALIBRATION CERTIFICATE 2430-200 Model:

Part #: **153-00007-05**

Doc. Rev. D

Z-Axis

-31.0

-6.0

Mfg. Lot #: 9m095a

Op. Number:

740

+1 G DC: 33.0 19.0

-17.0

25.00

Operator:

Calibration Date: 05/04/05

Jerry

0 G Bias 8.0 mV DC mV DC

mV DC

Serial #: ____427

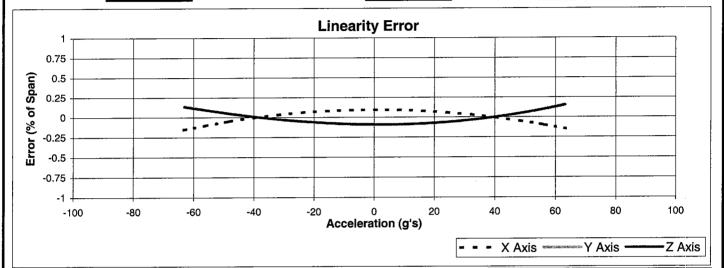
Supply Current:

26.3 mA

Scale Factor

-1 G DC:

-13.0 mV/G 24.90 25.20


12.0


-38.0

Full Scale: 200 G

Calibration Freq. 100 Hz Sensor ID

62663 62661 62665

Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - X	-0.06	-0.06	0.00	-0.06	-0.09	-0.14	0.09	0.99	1.58	1.70	2.19	2.63	2.53	1.72
Phase (deg)	-2.1	-2.6	-4.0	-7.9	-17.9	-40.1	-56.4	-78.5	-87.4	-93.6	-105.5	-120.4	-137.9	-157.5
Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - Y	-0.03	-0.03	0.00	-0.03	-0.09	-0.22	-0.29	0.09	0.35	0.39	0.71	1.07	1.18	1.07
Phase (deg)	-2.0	-2.5	-3.8	-7.7	-17.5	-39.1	-55.2	-75.8	-83.6	-88.9	-98.2	-109.9	-124.0	-141.9
Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - Z	0.00	0.01	0.00	-0.02	-0.07	-0.28	-0.39	-0.21	-0.30	0.14	0.34	0.57	0.93	0.23
Phase (deg)	-2.1	-2.6	-3.9	-7.9	-18.0	-40.3	-56.7	-77.5	-81.2	-91.7	-99.9	-110.4	-125.9	-142.6

^{*} Reference Frequency is 100 Hz

** 14.142 g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

Final Status:

Pass:

website: www.silicondesigns.com

CALIBRATION CERTIFICATE PAGE 2

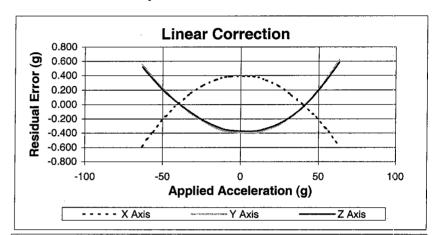
Model: 2430-200

Part #: 153-00007-05

Full Scale: 200 G

Serial #: 427

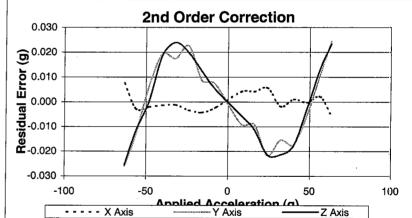
Op. Number: 740 Calibration Date: 05/04/05


Room Temperature Correction Factors:

Y = G's measured X = Output In Volts

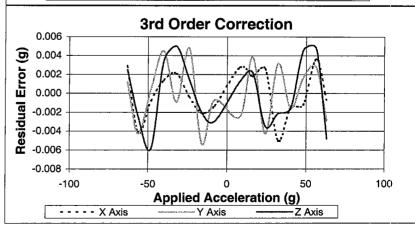
Linear Fit:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axis
b	-4.292E-01	3.593E-01	5.426E-01
а	4.004E+01	4.011E+01	3.973E+01
RMS Error	3.288E-01	3.319E-01	3.121E-01

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axis	Z-Axis
b	-8.298E-01	7.634E-01	9.225E-01
a₁	4.004E+01	4.011E+01	3.973E+01
a ₂	3.944E-01	-3.999E-01	-3.687E-01
RMS Error	3.677E-03	1.606E-02	1.658E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

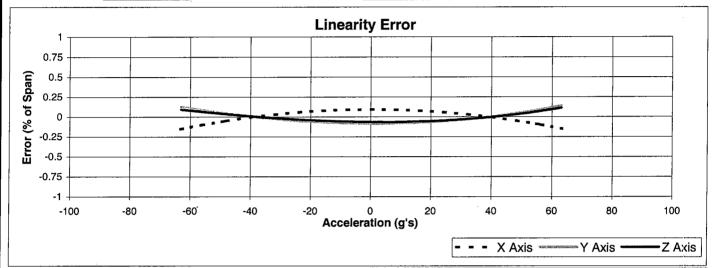
	X-Axis	Y-Axis	Z-Axis
b	-8.298E-01	7.633E-01	9.226E-01
a ₁	4.003E+01	4.015E+01	3.976E+01
a ₂	3.944E-01	-3.996E-01	-3.688E-01
a_3	3.746E-03	-2.203E-02	-2.206E-02
RMS Error	2.491E-03	3.204E-03	3.456E-03

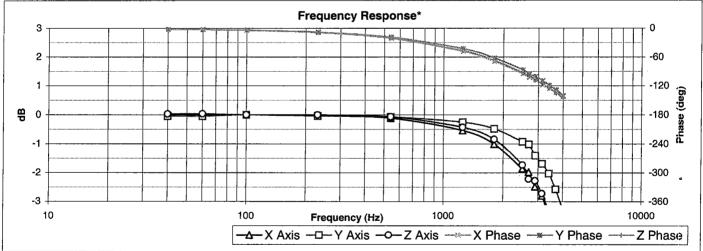
website: www.silicondesigns.com

Model: 2430-200

Full Scale: 200 G

CALIBRATION CERTIFICATE


Part #: **153-00007-05** Doc. Rev. **D** Mfg. Lot #: **0m063a** Op. Number: +1 G DC: 51.0 -14.0 740


Operator: Jerry Serial #: 486

Calibration Date: 05/04/05

Supply Current: 26.5 mA Calibration Freq. 100 Hz

14.0 mV DC -1 G DC: -63.0 mV DC 26.0 -39.0 -11.0 mV DC 0 G Bias Scale Factor 24.50 24.50 24.80 mV/G Sensor ID 71916 71877 71896

Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - X	-0.03	-0.03	0.00	-0.04	-0.11	-0.54	-1.01	-1.85	-1.97	-2.48	-2.79	-3.47	-4.08	-4.58
Phase (deg)	-2.3	-2.9	-4.5	-9.3	-21.3	-48.5	-69.3	-94.5	-102.2	-107.5	-117.5	-125.4	-133.8	-142.5
Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - Y	-0.05	-0.04	0.00	-0.04	-0.07	-0.25	-0.48	-0.92	-1.01	-1.40	-1.69	-2.02	-2.57	-3.25
Phase (deg)	-2.1	-2.7	-4.1	-8.1	-18.6	-42.5	-62.0	-86.7	-96.0	-100.6	-109.4	-119.0	-128.5	-140.1
Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out - Z	0.03	0.03	0.00	-0.01	-0.06	-0.42	-0.84	-1.73	-2.21	-2.27	-2.72	-3.30	-3.85	-4.70
Phase (deg)	-2.2	-2.8	-4.2	-8.9	-20.4	-46.9	-67.3	-92.7	-97.5	-107.7	-115.9	-124.7	-134.7	-145.7

^{*} Reference Frequency is 100 Hz

Final Status:

Pass:

website: www.silicondesigns.com e-mail: sales@silicondesigns.com

^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

CALIBRATION CERTIFICATE PAGE 2

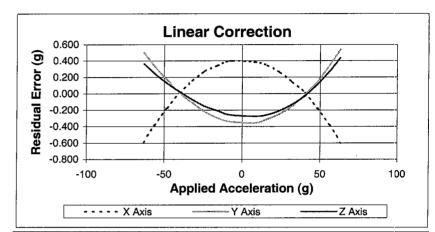
Model: 2430-200

Part #: 153-00007-05

Full Scale: 200 G

Serial #: 486

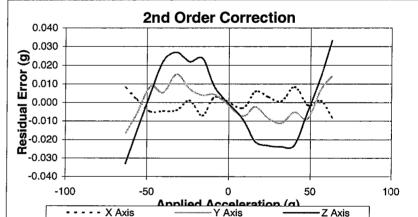
Op. Number: 740 Calibration Date: 05/04/05


Room Temperature Correction Factors:

Y = G's measured X = Output In Volts

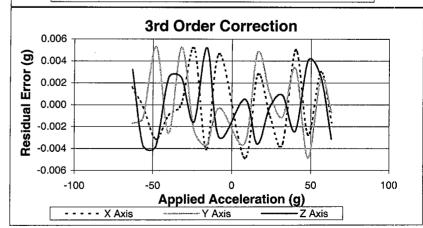
Linear Fit:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axis
b	-1.094E+00	1.677E+00	4.792E-01
а	4.078E+01	4.079E+01	4.024E+01
RMS Error	3.350E-01	2.948E-01	2.273E-01

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axis	Z-Axis
b	-1.503E+00	2.035E+00	7.549E-01
a ₁	4.077E+01	4.077E+01	4.024E+01
a_2	4.174E-01	-3.684E-01	-2.750E-01
RMS Error	4.895E-03	9.119E-03	2.111E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

	X-Axis	Y-Axis	Z-Axis
b	-1.502E+00	2.036E+00	7.551E-01
$\mathbf{a_1}$	4.076E+01	4.079E+01	4.029E+01
a ₂	4.172E-01	-3.695E-01	-2.753E-01
a ₃₁	5.374E-03	-1.261E-02	-2.958E-02
RMS Error	3.246E-03	3.215E-03	2.981E-03

website: www.silicondesigns.com

2430-100 Model:

CALIBRATION CERTIFICATE

153-00007-04

Doc. Rev. D

X-Axis Y-Axis

Mfg. Lot #: 4m286a

Op. Number: 740 Operator: joe

+1 G DC: 60.0 28.0 34.0 -1 G DC: -37.0 -71.0 -65.0 0 G Bias 11.0 -22.0 -15.0

Serial #: **677**

Calibration Date: 10/27/04

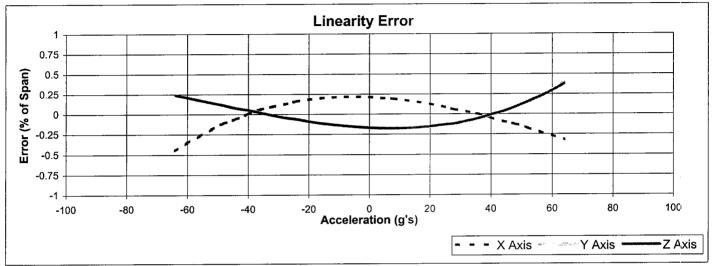
Scale Factor

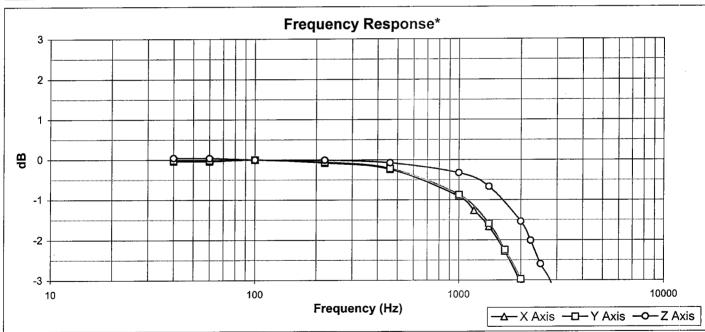
mV DC mV DC 49.50 mV/G

mV DC

Z-Axis

Full Scale: 100 G


Part #:


Supply Current: 27.1 mA Calibration Freq. 100 Hz

Sensor ID

49.00 168393 168419 168381

48.80

Freq. (Hz)**	40	60	100	220	460	1000	1185	1400	1675	2000	2235	2500	3200	4000
dB Out - X	-0.033	-0.037	0	-0.076	-0.234	-0.913	-1.263	-1.668	-2.28	-3.065	-3.663	-4.307	-6.239	-8.599
dB Out - Y	-0.019	-0.018	0	-0.062	-0.22	-0.873	-1.592	-2.24	-2.974	-3.721	-4.435	-5.481	-6.422	-8.841
dB Out - Z	0.041	0.039	0	-0.009	-0.076	-0.332	-0.671	-1.542	-2.015	-2.6	-3.106	-4.287	-5.304	-6.656

^{*} Reference Frequency is 100 Hz

Pass:

website: www.silicondesigns.com

e-mail: sales@silicondesigns.com

Final Status:

^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

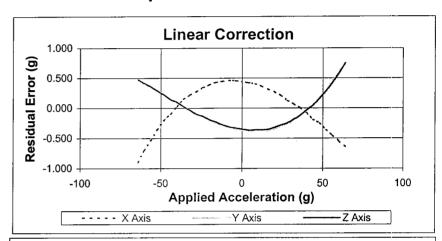
CALIBRATION CERTIFICATE PAGE 2

Model: 2430-100

Part #: 153-00007-04

Full Scale: 100 G

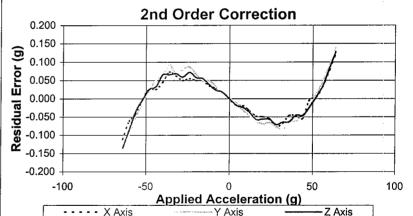
Serial #: 677


Op. Number: 740 Calibration Date: 10/27/04

Room Temperature Correction Factors:

Linear Fit:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axis
b	-3.957E-01	4.729E-01	3.922E-01
а	2.042E+01	2.049E+01	2.020E+01
RMS Error	3.879E-01	3.262E-01	3.099E-01

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$

	X-Axis	Y-Axis	Z-Axis
b	-8.401E-01	8.417E-01	7.437E-01
a ₁	2.042E+01	2.049E+01	2.020E+01
a ₂	1.237E-01	-1.035E-01	-9.580E-02
RMS Error	5.376E-02	6.824E-02	5.959E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

	X-Axis	Y-Axis	Z-Axis
b	-8.396E-01	8.418E-01	7.436E-01
a ₁	2.049E+01	2.057E+01	2.027E+01
a_2	1.233E-01	-1.033E-01	-9.560E-02
a_3	-1.025E-02	-1.328E-02	-1.108E-02
RMS Error	8.126E-03	6.561E-03	5.613E-03

3rd Order Correction 0.025 0.020 Œ 0.015 Error 0.010 0.005 0.000 Residual -0.005 -0.010 -0.015 -0.020 -0.025 100 -100 Applied Acceleration (g) ---- X Axis

website: www.silicondesigns.com

Model:

2430-100

CALIBRATION CERTIFICATE

Part #: **153-00007-04**

Doc. Rev. D

X-Axis Y-Axis Z-Axis +1 G DC: 28.0 50.0

Mfg. Lot #: 4m286a

Op. Number: Operator:

-1 G DC:

mV DC 38.0 -49.0 -61.0 mV DC 0.0 -12.0 mV DC

Serial #: 678

Calibration Date: 10/27/04

Supply Current: 27.2 mA

740

ioe

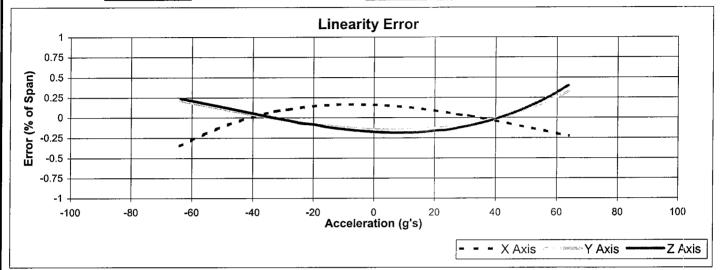
Scale Factor

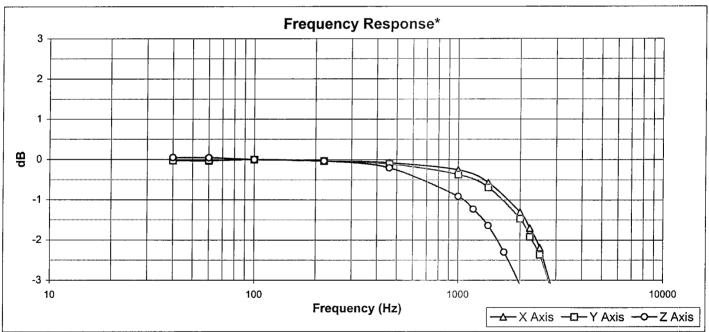
0 G Bias

mV/G 49.10 49.80

Full Scale: 100 G

Calibration Freq.


100 Hz


Sensor ID

49.30 168386 168379 168394

-70.0

-21.0

Freq. (Hz)**	40	60	100	220	460	1000	1400	2000	2235	2500	2830	3200	3575	4000
dB Out - X	-0.026	-0.029	0	-0.037	-0.081	-0.256	-0.569	-1.305	-1.701	-2.191	-3.118	-3.941	-5.058	-6.043
dB Out - Y	-0.025	-0.023	0	-0.036	-0.107	-0.37	-0.686	-1.465	-1.918	-2.367	-3.157	-3.777	-4.749	-5.922
dB Out - Z	0.047	0.043	0	-0.036	-0.209	-0.908	-1.228	-1.638	-2.303	-3.107	-3.757	-4.5	-6.27	-8.522

^{*} Reference Frequency is 100 Hz

Pass:

website: www.silicondesigns.com

e-mail: sales@silicondesigns.com

Final Status:

^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

CALIBRATION CERTIFICATE PAGE 2

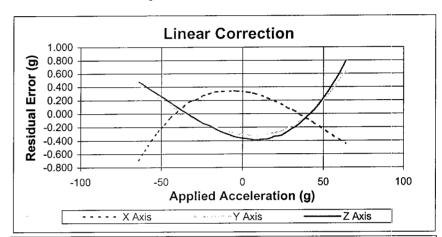
Model: 2430-100

Part #: 153-00007-04

Full Scale: 100 G

Serial #:

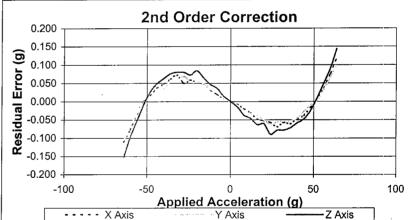
678


Op. Number: 740 Calibration Date: 10/27/04

Room Temperature Correction Factors:

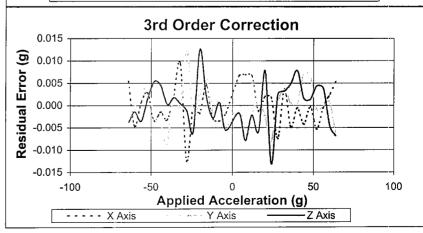
Linear Fit:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axis
b	2.794E-01	1.073E-01	3.344E-01
а	2.026E+01	2.038E+01	2.009E+01
RMS Error	2.914E-01	2.723E-01	3.237E-01

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis_	Y-Axis	Z-Axis
b	-5.187E-02	4.176E-01	7.000E-01
a ₁	2.027E+01	2.039E+01	2.009E+01
a ₂	9.077E-02	-8.609E-02	-9.859E-02
RMS Error	5.347E-02	4.879E-02	6.990E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

	X-Axis	Y-Axis	Z-Axis
b	-4.972E-02	4.168E-01	6.996E-01
a ₁	2.033E+01	2.045E+01	2.018E+01
a_2	8.964E-02	-8.563E-02	-9.822E-02
a₃	-1.004E-02	-9.369E-03	-1.285E-02
RMS Error	4.684E-03	4.446E-03	5.206E-03

website: www.silicondesigns.com

CALIBRATION CERTIFICATE

Mfg Lot #: 5m031a

Model: **2210-200**

Part #: **153-00001-05**

Doc. Rev.

Op. Number: 135

Serial #: **7132**

Operator:

+1 G DC: 33 mV DC

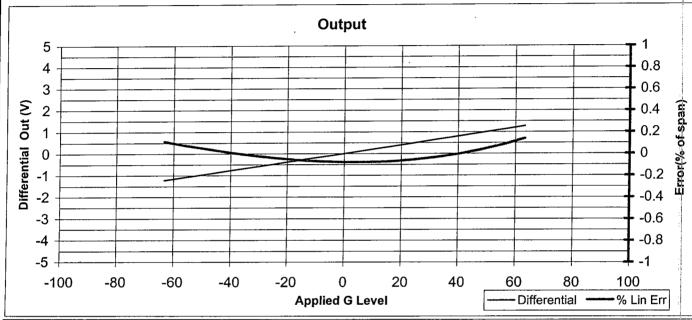
-1 G DC: -6 mV DC

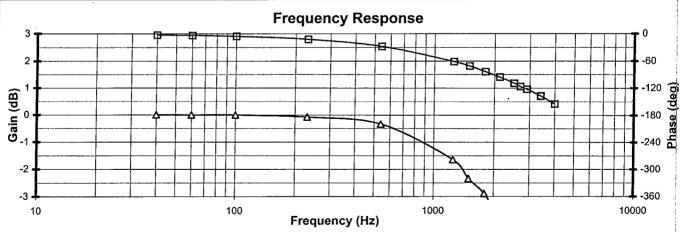
Full Scale: 200 g

Calibration Date: 02/28/05

0 G Bias 14 mV DC

Calibration Freq.: Sensor ID


100 Hz 133344


Scale Factor

19.7 mV/G

Supply Current:

7.9 mA

														ـــانـــــ
Freq. (Hz)**	40	60	100	230	540	1250	1500	1800	2120	2500	2690	2900	3400	4000
dB Out	0.01	0.00	0.00	-0.08	-0.34	-1.64	-2.34	-2.89	-3.75	-4.77	-5.12	-6.16	-7.53	-9.33
SF mV/g	20	20	20	19	19	16	15	14	13	11	11	10	8	7
Phase (deg)	-3	-4	-6	-12	-28	-61	-71	-83	-95	-109	-116	-122	-137	-155

^{*} Reference Frequency is 100 Hz

Final Status:

Pass:

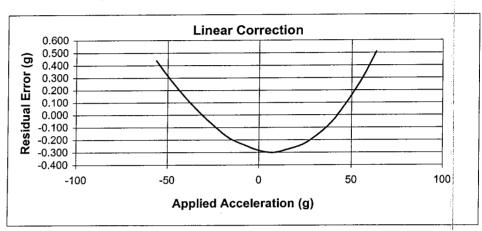
website: www.silicondesigns.com

^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

CALIBRATION CERTIFICATE PAGE 2

Model: 2210-200 Part #: 153-00001-05

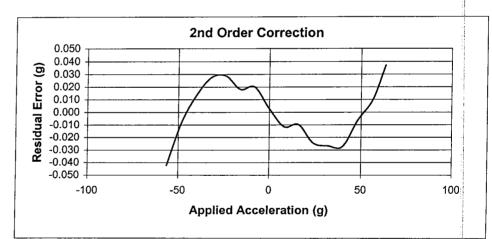
Full Scale: 200 G


Serial #: 7132 Op. Number: 135 Calibration Date: 02/28/05

Room Temperature Correction Factors:

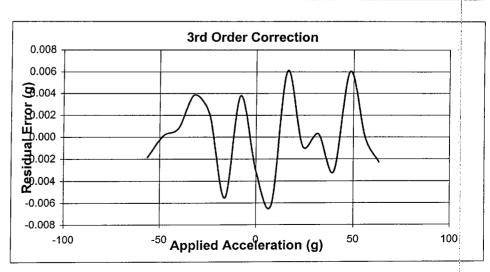
Linear Fit:

$$Y = aX + b$$


RMS Error 2.603E-01

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


RMS Error 2.253E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

RMS Error 3.572E-03

website: www.silicondesigns.com

CALIBRATION CERTIFICATE

Mfg Lot #: **5m031a**

Model: **2210-200**

Part #: **153-00001-05**

Doc. Rev.

Op. Number: **135**

Serial #: **7133**

Full Scale: 200 g

Operator:

+1 G DC: -4 mV DC

Calibration Date: 02/28/05

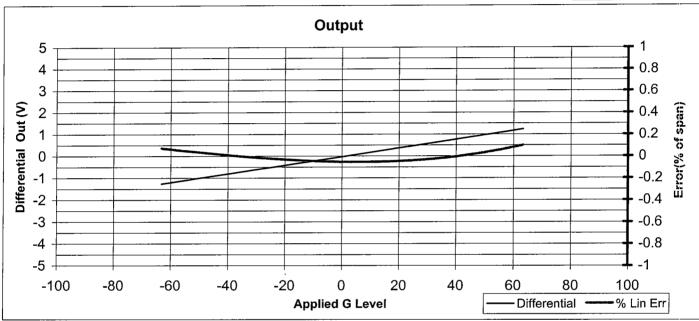
100 Hz

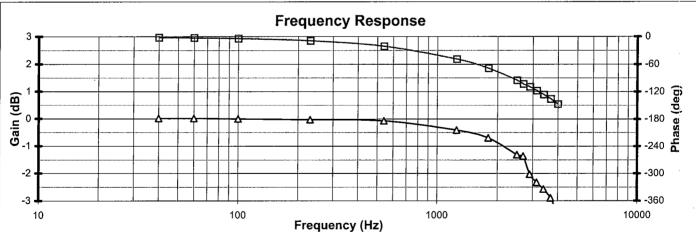
-1 G DC: -45 mV DC

Calibration Freq.:

0 G Bias Scale Factor

-25 mV DC


Sensor ID


127946

19.7 mV/G

Supply Current:

7.0 mA

Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out	0.02	0.02	0.00	-0.03	-0.07	-0.42	-0.70	-1.31	-1.36	-2.03	-2.33	-2.57	-2.90	-3.44
SF mV/g	20	20	20	20	19	19	18	17	17	16	15	15	14	13
Phase (deg)	-2	-3	-4	-9	-21	-49	-69	-95	-103	-109	-118	-126	-136	-147

^{*} Reference Frequency is 100 Hz

Final Status:

Pass:

website: www.silicondesigns.com

^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

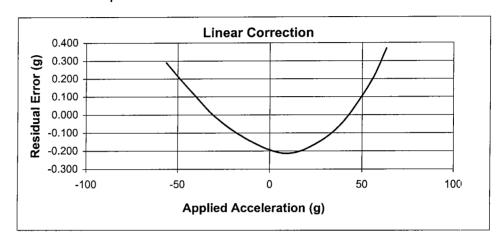
CALIBRATION CERTIFICATE PAGE 2

Model: 2210-200 Part #: 153-00001-05 Full Scale: 200 G

Serial #: 7133 Op. Number: 135 Calibration Date: 02/28/05

Room Temperature Correction Factors:

Y = G's measured X = Output In Volts


Linear Fit:

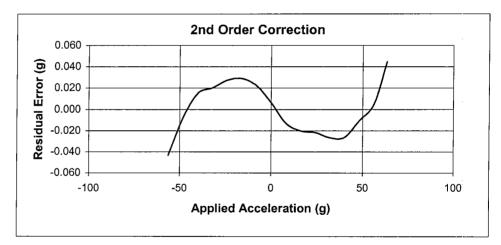
$$Y = aX + b$$

b 1.298E+00

a 5.073E+01

RMS Error 1.812E-01

2nd order Fit:


$$Y = a_2 X^2 + a_1 X + b$$

b 1.500E+00

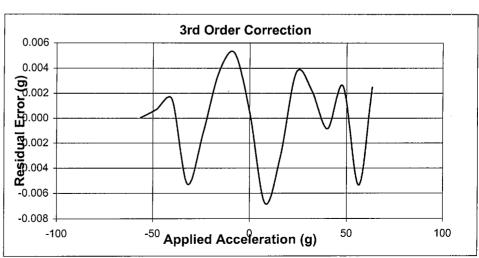
a₁ 5.078E+01

a₂ -3.826E-01

RMS Error 2.403E-02

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$


b 1.496E+00

a₁ 5.085E+01

a₂ -3.700E-01

a₃ -8.126E-02

RMS Error 3.427E-03

website: www.silicondesigns.com

CALIBRATION CERTIFICATE

Mfg Lot #: 5m031a

Model: 2210-200

Part #: 153-00001-05

Doc. Rev.

Op. Number: 135

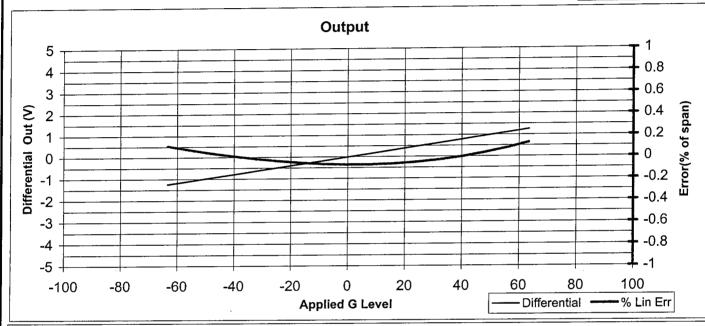
Serial #: **7134**

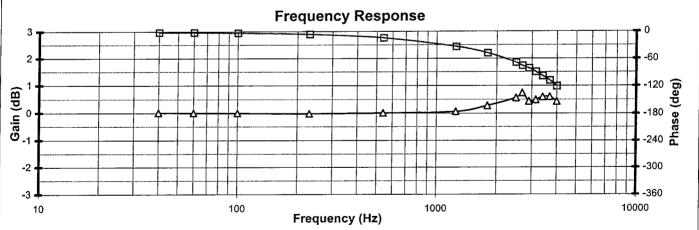
Operator: Calibration Date: 02/28/05 +1 G DC: 14 mV DC

-1 G DC: -25 mV DC

Full Scale: 200 g Calibration Freq.:

0 G Bias Scale Factor


-6 mV DC 19.7 mV/G


Sensor ID

100 Hz

Supply Current:

7.6 mA

Freq. (Hz)**	40	60	100	230	540	1250	1800	2500	2690	2900	3140	3400	3685	4000
dB Out	0.01	0.01	0.00	-0.02	0.01	0.07	0.28	0.56	0.74	0.44	0.49	0.59	0.60	0.43
SF mV/g	20	20	20	20	20	20	20	21	21	21	21	21_	21	21
Phase (deg)	-2	-2	-3	-6	-14	-34	-48	-69	-76	-82	-90	-98	-108	-121

^{*} Reference Frequency is 100 Hz

Final Status:

Pass:

website: www.silicondesigns.com

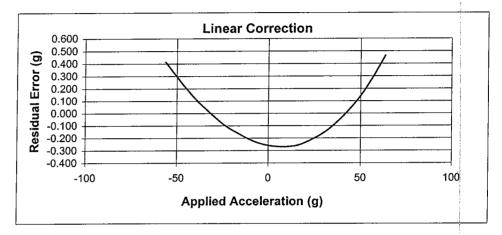
^{** 14.142} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90157

CALIBRATION CERTIFICATE PAGE 2

Model: 2210-200 Part #: 153-00001-05

Full Scale: 200 G

Serial #: 7134 Op. Number: 135 Calibration Date: 02/28/05

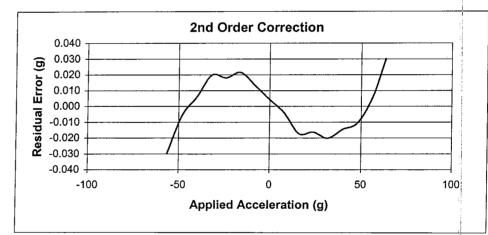

Room Temperature Correction Factors:

Linear Fit:

$$Y = aX + b$$

b 3.182E-01 5.070E+01

RMS Error 2.389E-01


2nd order Fit:

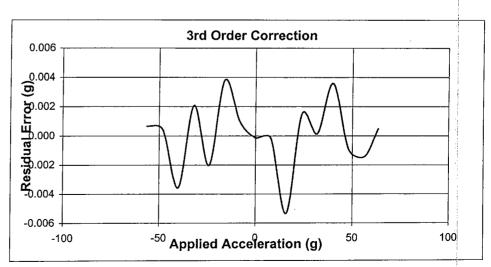
$$Y = a_2 X^2 + a_1 X + b$$

b 5.832E-01 5.078E+01

a₂ -5.062E-01

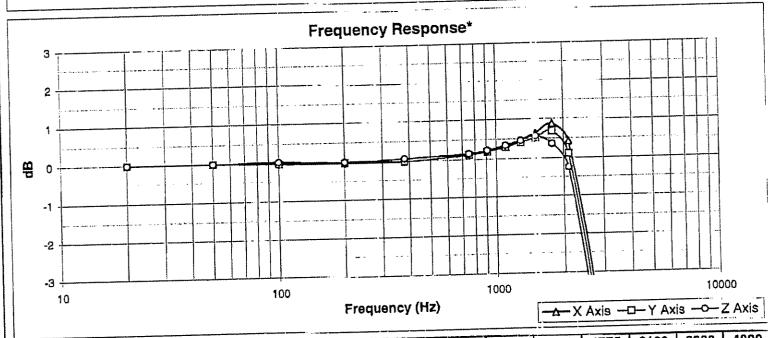
RMS Error 1.691E-02

3rd order Fit:


$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

b 5.794E-01 a₁ 5.083E+01

a₂ -4.935E-01


a₃ -5.681E-02

RMS Error 2.294E-03

website: www.silicondesigns.com

Jun. 03 2005 09:39AM P2 FAX NO. :425 391 0446 FROM : Silicon Designs Inc SILICON DESIGNS INC. 1445 NW Mall St., Issaquah WA 98027-5344, (425) 391-8329, FAX (425) 391-0446 CALIBRATION CERTIFICATE 2440-025 Model: Doc. Rev. ____ Z-Axis Y-Axis Part #: 153-00024-02 179.0 219.0 mV DC +1 G DC: 204.0 Op. Number: Mfg. Lot #: 4m242a 740 -193.0 -217.0 -180.0 mV DC -1 G DC: Operator: lynn 19.0 mV DC -19.0 Serial #: 26 Callbration Date: 09/13/04 0 G Blas 6.0 mV/G 199.00 197.10 Scale Factor 197.10 Supply Current: 27.2 mA 166788 168770 Sensor ID 165246 Full Scale: 25 G Calibration Freq. 50 Hz Linearity Error 0.75 Error (% of Span) 0.5 0.25 -0.25 -0.5 -0.75

Acceleration (g's)

2900 4000 2100 1775 1285 1500 1100 380 750 910 200 100 50 20 Freq. (Hz)** -4.913 | -13.98 0.43 0.65 0.884 0.295 0.461 0.189 0.112 -0.018 -0.027 | -0.028 dB Out - X -0.002-5,432 | -14.97 0.114 0.523 0.7 0.295 0.415 0.188 0.113 -0.023 -0.027 -0.016 -0.002 dB Out - Y -0.257 | -6.089 | -15.59 0.571 | 0.367 0.458 0.338 0.217 -0.005 0.057 0.144 -6E-04 dB Out - Z Final Status:

TriAxial Analog B-23

-15

-20

-25

Pass:

25

website: www.slilcondesigns.com

e-mail: sales@silicondeslgns.com

10

w x X Axis minima Y Axis

Reference Frequency is 50 Hz

^{** 7.071} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90152

CALIBRATION CERTIFICATE PAGE 2

Model: 2440-025

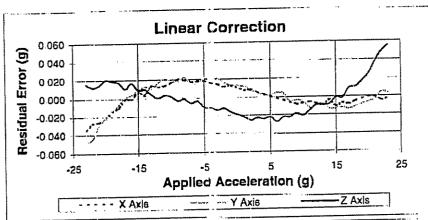
Part #: 153-00024-02

Full Scale: 25 G

Serial #:

Op. Number: 740 Calibration Date: 09/13/04

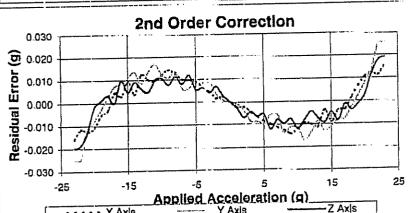
Room Temperature Correction Factors:


Y = G's measured

X = Output In Volts

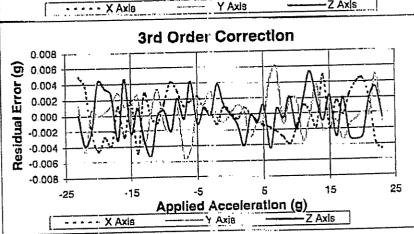
Linear Fit:

$$Y = aX + b$$

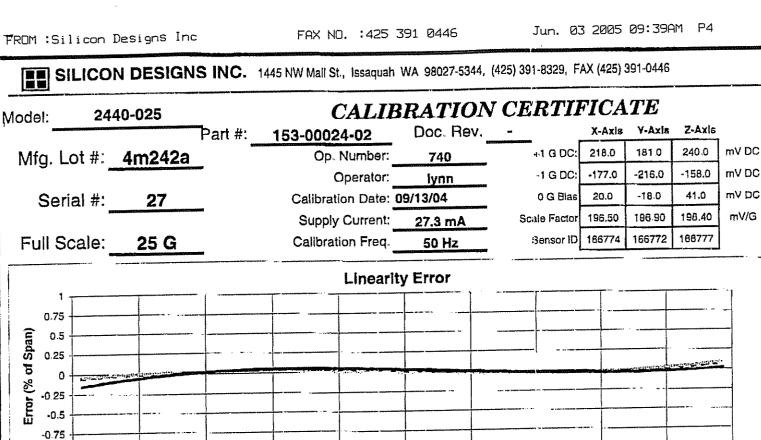

	X-Axis	Y-Axis	Z-Axis
b	-2.172E-02	7.957E-02	-9.900E-02
а	5,074E+00	5.075E+00	5.025E+00
RMS Error	1,295E-02	1.625E-02	1.921E-02

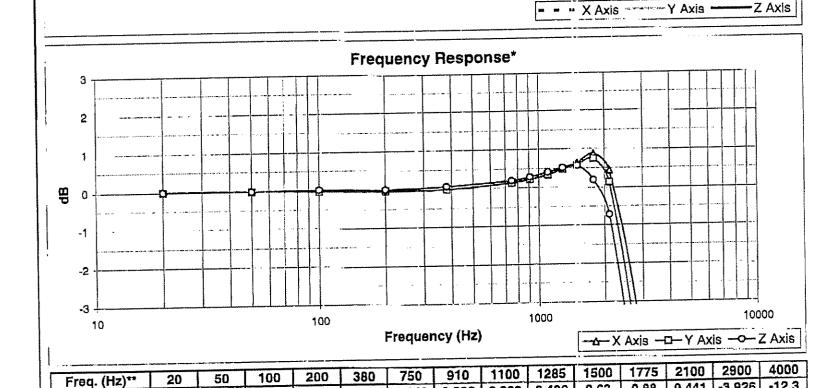
2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axle	Z-Axis
b	-3.190E-02	6.692E-02	-7.957E-02
81	5,074E+00	5.075E+00	5 025E+00
a ₂	1.394E-03	1.732E-03	-2.507E-03
RMS Error	9.406E-03	1.191E-02	9.003E-03

3rd order Fit:


$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axls	Z-Axis		
ы	-3.192E-02	6.710E-02	-7.975E-02		
A,	5.081E+00	5,085E+00	5.033E+00		
82	1.396E-03	1.687E-03	-2.565E-03		
B ₃	-5.939E-04	-7,650E-04	-5.495E-04		
RMS Error	2.671E-03	2.518E-03	2.683E-03		

website: www.slllcondesigns.com

-25

0.142

0.149

0.195

-0.004

-0.003

0.069

Acceleration (g's)

Reference Frequency is 50 Hz

dB Out - X

dB Out - Y

dB Out - Z

0.003

-0.002

-6E-04

-0.022

-0.021

0.02

-0.029

-0.023

0.005

Pass:

0.441

0.133

0.88

0.75

0.562 | 0.187 | -0.727 |

0.486

0.477

0.332

0.35

0.63

0.585

Final Status:

-3.926

-5.179 -14.21

25

Z Axis

20

15

e-mail: sales@sllicondesigns.com website: www.silicondesigns.com

0.226

0.233

0.281

^{** 7.071} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90152

CALIBRATION CERTIFICATE PAGE 2

Model: 2440-025

Part #: 153-00024-02

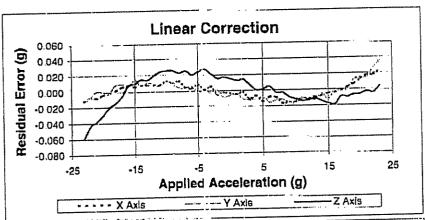
Full Scale: 25 G

Serial #: _____27

Op. Number: 740

Calibration Date: 09/13/04

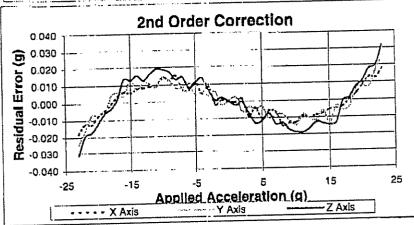
Room Temperature Correction Factors:


Y = G's measured

X = Output In Volts

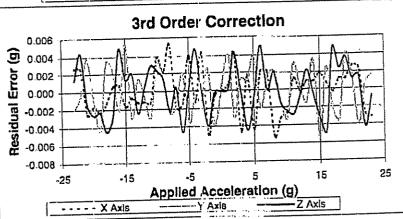
Linear Fit:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axle		
ь	-6.310E-02	5.597E-02	-2.511E-01		
a	5.088E+00	5.078E+00	5.041E+00		
RMS Error	9.897E-03	1.146E-02	1.948E-02		

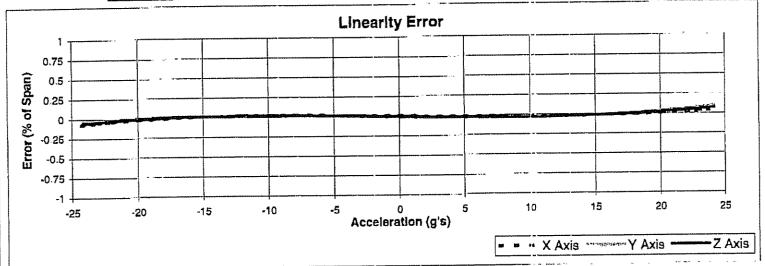
2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	axA-Y	Z-Axis		
ь	-5.950E-02	6.211E-02	-2.661E-01		
81	5.088E+00	5.078E+00	5.041E+00		
82	-4.948E-04	-8.425E-04	2,034E-03		
RMS Error	9.384E-03	1.012E-02	1.433E-02		

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$


X-Axis	Y-Axis	Z-Axis
-5.981E-02	6.219E-02	-2.667E-01
5.095E+00	5.086E+00	5,053E+00
-4.707E-04	-8.603E-04	2.157E-03
-5.977E-04	-6.412E-04	-9.062E-04
2.591E-03	2.773E-03	2.819E-03
	-5.981E-02 5.095E+00 -4.707E-04 -5.977E-04	-5.981E-02 6.219E-02 5.095E+00 5.086E+00 -4.707E-04 -8.603E-04 -5.977E-04 -6.412E-04

website: www.silicondesigns.com

CALIBRATION CERTIFICATE 2440-025 Model: alxA-Y Doc. Rev. -153-00024-02 Part#: mV DC 225.0 184.0 226.0 +1 G DC: Op. Number: Mfg. Lot #: 4m242a 740 mV DC -170,0 -213.0 -1720 -1 G DC: Operator: Ivnn mV DC 27.0 28.0 -14,0 Serial #: 28 o G Blas Calibration Date: 09/13/04

mV/G Scale Factor 197.00 196.70 198.10 Supply Current: 27.7 mA Sionsor ID 165247 165254 Full Scale: 25 G Calibration Freq.

-	77 (2 (a) 14 (a)														
ľ	Freg. (Hz)**	20	50	100	200	380	750	910	1100				2100	2900	4000
ŀ	dB Out - X	-6E-04	0	-0.016	-0.018	-0.005	0.149	0.233	0.326	0.446	0.492	0.307	-1.052	-7.73	-16.87
ŀ	dB Out - Y	-0.004		-0.024									-1.216		-16.5
H	dB Out - Z	-0.001		0.012								0.085	-1.008	-7.382	-17.04

Reference Frequency is 50 Hz

Pass:

Final Status:

e-mail: sales@sillcondesigns.com website: www.silicondesigns.com

^{** 7.071} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90152

CALIBRATION CERTIFICATE PAGE 2

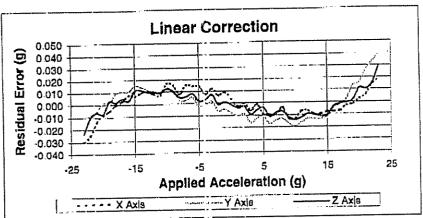
Model: 2440-025

Part #: 153-00024-02_

Full Scale: 25 G

Serial #:

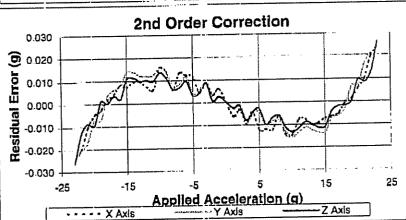
Op. Number: 740 Calibration Date: 09/13/04


Room Temperature Correction Factors:

Y = G's measured X = Output In Volts

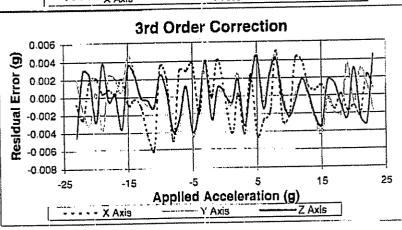
Linear Flt:

$$Y = aX + b$$


	X-Axis	Y-Axis	Z-Axla
ь	-1.284E-01	5.041E-02	-1.993E-01
a	5.077E+00	5.083E+00	5,049E+00
RMS Error	1.098E-02	1.346E-02	9.817E-03

2nd order Fit:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axls	Z-Axis		
b	-1.315 E- 01	5.807E-02	-1.978E-01		
81	5.077E+00	5.083E+00	5,049E+00		
a ₂	4.273E-04	-1.053E-03	-2.125E-04		
RMS Error	1.064E-02	1.167E-02	9.721E-03		

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

	X-Axis	Y-Axis	Z-Axis		
b∫	-1.317E-01	5.816E-02	-1,981E-01		
8,	5.085E+00	5.092E+00	5.057 E +00		
82	4.768E-04	-1.070E-03	-1,398E-04		
83	-6.768E-04	-7.530E-04	-6.067E-04		
RMS Error	2.757E-03	2.510E-03	2.598E-03		

website: www.silicondesigns.com

Jun. 03 2005 09:41AM P8 FAX NO. :425 391 0446 FROM :Silicon Designs Inc SILICON DESIGNS INC. 1445 NW Mall St., Issaquah WA 98027-5344, (425) 391-8329, FAX (425) 391-0446 CALIBRATION CERTIFICATE 2440-025 Model: X-Axis Y-Axis Z-Axis Doc. Rev. -Part #: 153-00024-02 207.0 mV DC +1 G DC: 188.0 214.0 Mfg. Lot #: 4m242a Op. Number: -194.0 mV DC -207.0 -184.0 -1 G DC: Operator: lynn mV DC 6.0 -10.0 15.0 0 G Bias Serial #: 29____ Calibration Date: 09/13/04 Scale Factor 197.00 198.90 198.60 mV/G Supply Current: 27.2 mA 186790 166795 Siensor ID 168793 Calibration Freq. 50 Hz Full Scale: 25 G **Linearity Error** 0.75 Error (% of Span) 0.5 0.25 -0.25 -0.5 -0.75 -10 -15 -25 -20 Acceleration (g's) - * X Axis ******* Y Axis * ·Z Axis Frequency Response* -3 1000 100 10

<u></u>					**	·								
Freq. (Hz)**	20	50	100	200	380	750	910	1100	1285	1500	1775	2100	2900	4000
dB Out - X	-0.003	0	-0.004	-0.016	-0.009	0.141	0.234	0.343	0.464	0.468	0.083	-1.369	-5.391	-15.2
dB Out - Y	-0.001	0	-0.04	-0.041	-0.03	0.086	0.156	0.258	0.386	0.472	0.638	0.011	-5.276	-15.3
dB Out - Z	0	0	0.021	-0.014	0.051	0.105	0.168	0.267	0.401	0.535	0.363	-0.025	-5.132	-14.2
* Petarance Erecular	novie 50 H:	,		<u> </u>	<u>'</u>	<u> </u>		<u> </u>		Final 9	Status:			

Frequency (Hz)

Pass:

-X Axis -- Y Axis -- Z Axis

website: www.silicondesigns.com e-mail: sales@slilcondesigns.com

^{*} Reference Frequency is 50 Hz

^{** 7.071} g Peak Acceleration Traceable to NIST through Vibration Calibration Standard M-90152

SILICON DESIGNS INC. 1445 NW Mail St., Issaquah WA 98027-5344, (425) 391-8329, FAX (425) 391-0446

CALIBRATION CERTIFICATE PAGE 2

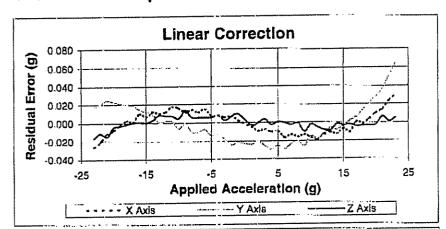
Model: 2440-025

Part #: 153-00024-02_

Full Scale: 25 G

Serial #:

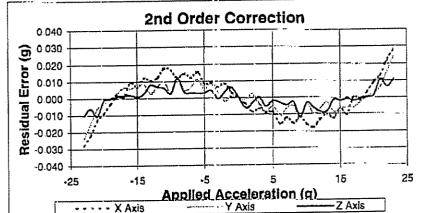
Op. Number: 740 Calibration Date: 09/13/04


Room Temperature Correction Factors:

Y = G's measured X = Output In Volts

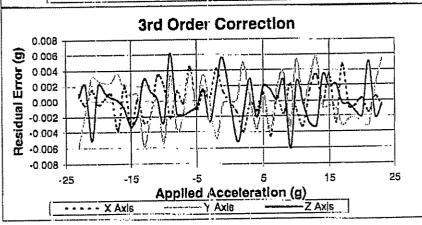
Linear Fit:

$$Y = aX + b$$


	X-Axls	Y-Axis	Z-Axis
b	4.742E-02	-7.782E-02	-7.992E-02
a	5.077E+00	5.080E+00	5.036E+00
RMS Error	1.278E-02	2.169E-02	6.251E-03

2nd order Flt:

$$Y = a_2 X^2 + a_1 X + b$$


	X-Axis	Y-Axis	Z-Axis
ь	4.834E-02	-5,505E-02	-8.319E-02
a, [5.077E+00	5.080E+00	5.036E+00
82	-1.263E-04	-3.125E-03	4,410E-04
RMS Error	1.275E-02	8.628E-03	5.559E-03

3rd order Fit:

$$Y = a_3 X^3 + a_2 X^2 + a_1 X + b$$

	elxA _" X	Y-Axis	Z-Axis
þ	4.844E-02	-5,519E-02	-8.326E-02
81	5.088E+00	5.087E+00	5.040E+00
B ₂	-1.488E-04	-3.090E-03	4.551 E-04
ag	-8.270E-04	-5.308E-04	-3.132E-04
RMS Error	2.241E-03	3.133E-03	2,683E-03

website: www.sillcondesigns.com

e-mail: sales@silicondesigns.com

fax: (949) 661-7231 ph. (949) 493-8181 fax: (949) 661-7231 email: customercaremailbox@endevco.com

Temperature (deg C):

Relative Humidity (%):

Input Resistance (ohms): Output Resistance (ohms):

Transverse Sensitivity(%): 0.8

16787 Resonance Frequency (Hz): ZMO (mV):

Document number: 83572

Calibration Certificate

Description: 4 Arm PR accelerometer ENDEVCO Manufacturer:

7264B-500T Model Number:

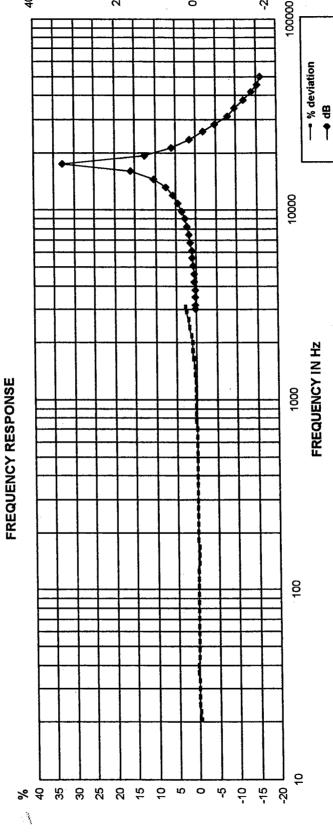
Serial Number: B15071

@ 100 Hz, 0.7447 mV/g

0.07594 mV/ m/s 2 @

100 Hz,

98 m/s²


10 g

섫 충

Sensitivity:

Excitation: 10.0 V

Notes:

20dB

40dB

-20dB

B

Endevco, a division of Meggitt, located at 30700 Rancho Viejo Road, San Juan Capistrano, CA, certifies that the above instrument was tested using comparison calibrations per ANSI S2.2 using Endevco IM68357. This calibration is traceable to the National Institute of Standards and Technology and is in accordance with ANSI/NCSL Z540-1-1994 (MIL-STD 45662A).

2270M7A/2771A-10 FINAL 2901 REV C 822/271199-05 AC56/DP46 ENDEVCO 2901 Console serial number: NIST traceability #: Ref Model number: Ref Serial number: Ref Manufacturer:

Test Name:

ED421 Rev D

Uncertainty estimate (95% confidence, k≖2) 100.0 < f <= 2500.0 Hz 20.0 < f <= 100.0 Hz 100.0 Hz Sensitivity +/-1.2% +/-1.5% +/-1.2% +/- 2.5 % +/- 5.0 %

ا. آھ 10000.0 < f <= 20000.0 Hz 2500.0 < f <= 10000.0 Hz

3/7/2005 10:20 AM operator Name and Title

W.

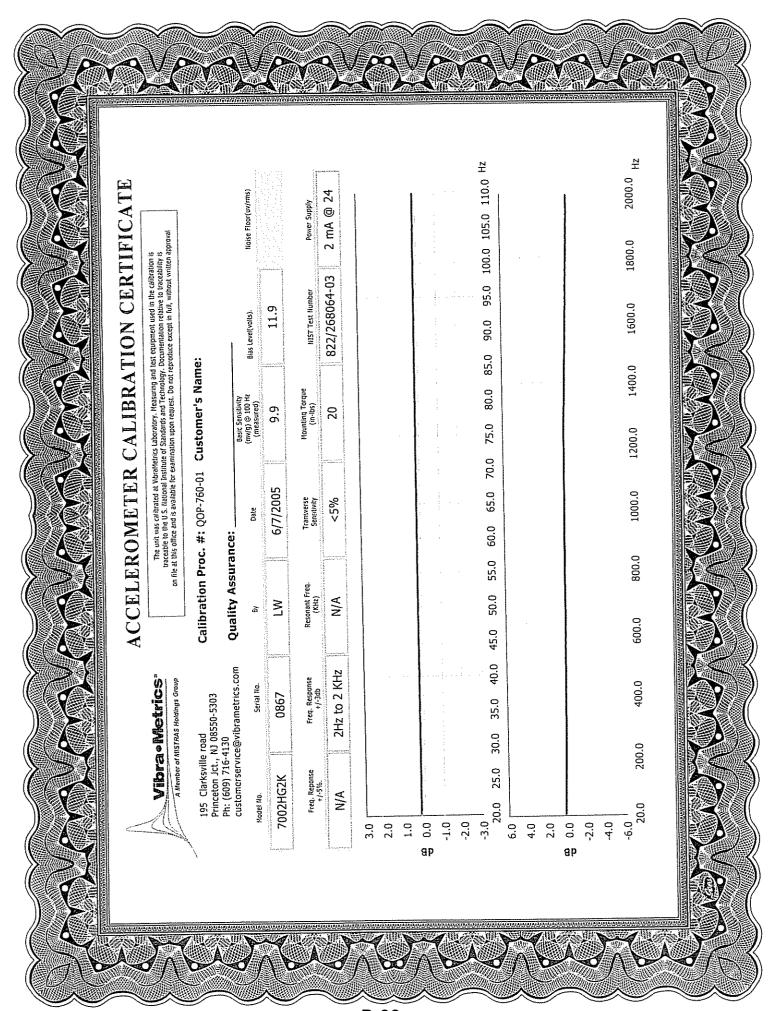
PE SBU

This certificate shall not be reproduced, except in full, without the written approval of Endevco.

ENDEVCO, a leading authority in precision dynamic measurement, certifies that this instrument meets or exceeds all published specifications This instrument has been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology (NIST) within the limitations of their calibration services, or have been derived from accepted values or natural physical constraints, or have been derived by ratio or self-calibration techniques.

All activities performed in this calibration comply with ISO/IEC 17025-2000 and ANSI/NCSL Z540-1-1994 (MIL-STD 45662A).

Robert Meyer


President

Alex Johnstone

Director, Product Assurance

ENDEVCO Z

An ISO-9001 Certified Company

						110.0 Hz		2000.0 Hz	
CATI	Haire Floor(uv/ims)	Pawer Supply	2 mA @ 24	:		100.0 105.0 11			
TER		:		:				1800.0	
) ME	Blas Level(volts).	11.3	822/268064-03			90.0 95.0		1600.0	
ERC ON C	1 xel8	s santi	82	1447		.0 85.0		1400.0	
ACCELEROMETER IBRATION CERTIFIC	Base Sensitivity (mv/q) fo 100 Hz	9.5 Mounting Torque (in-lbs)	20			75.0 80.0		1200.0	
ACLIBR	Man)	502				.0 70.0			
CA	Date	5/24/2005 Transverse Sassibility	%5>	***		60.0 65.0		1000.0	
8	Group	(Freq.				.0 55.0		800.0	
	S Holdings Uperator	LW Resonant Freq. (KHz)	N/A			45.0 50.0		600.0	
Vibra•Metric	A Member of MISTRAS Holdings Group	0902 Freq. Response +/-3db	2Hz to 2 KHz			40.0		400.0	
	A Member o	0902 Freq. Respo	2Hz to			30.0 35.0		, 500.0	
		7002HG2K Fres. Reponse +/-5%.	N/A	- tagan		25.0			
	Martin III	7002		3.0	0.0 P	-2.0 -3.0 20.0	6.0 4.0	48 0.0 -2.0 -4.0 -6.0 -20.0	

POWER SUPPLY CERTIFICATE OF CALIBRATION

We hereby certify that the power supply described below has been calibrated in compliance with the system requirements defined by ANSI/NCSL Z540-1, as amended. Calibration instrumentation used is maintained in accordance with ISO 10012-1, being directly traceable to N.I.S.T. Documentation supporting this traceability is at our facility and available upon request.

MODEL: LP-24-3B SERIAL NUMBER: 182
MEASURED CURRENT SOURCE OF 2.2mA ± 0.3 Ma is: "X"= 2.2 , "Y"= 2.2 , "Z"= 2.2 .
MEASURED VOLTAGE AT INPUT OF 24VDC $\pm 1.2V$ is: $24.0V$ $"X"=24.0V$, "Z"= $24.0V$, "Z"= $24.0V$
FUNCTIONAL TEST USING SCOPE, FOR SIGNAL DISTORTION:
TECHNICIAN: A.M.
TEST DATE: 6 9 05
QUALITY VERIFICATION STAMP: ACCEPTANCE DATE: 6/6/06

AUTHORIZED SIGNATURE: Desa Bluce.

TITLE: Quality Inspector

QUALITY ASSURANCE DEPT.

Dytran Instruments, Inc.

21592 Marilla St. Chalsworth. CA 91311 Ph: 818-700-7818 Fax 818-700-7880 www.dylran.com email: info@dylran.com

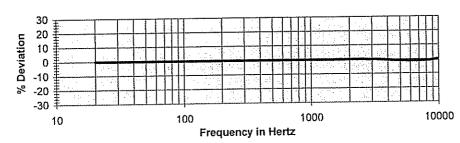
page 1 of 1

CALIBRATION CERTIFICATE UNITY GAIN CURRENT SOURCE POWER UNIT

CUSTO	MER:		ENSCO,	INC	•			TEST	REP	ORT	#:	1005		5/18	3/2005
PURCH	RCHASE ORDER #: 85737 SALES ORDER #:				R #: 1	11915	6	P	ROCEDU	RE:	TP	4023			
MODEL	: 4	1110C				SER	RIAL#	ł:	1005		***************************************		······		
BATTER	BATTERY POWERED LINE POWERED X 115VAC								Х	- 2	230VAC				
NEW U	*** 1		RATION [1]	<u> </u>	AS	RECE	IVED	CODE			F	S RETUR	RNE	D COL)E
TEMPE	RATURE (°C):	22					······································					HUMID	ITY	(%):	35
	CALIBRATION DATA														
POWER	SUPPLY VOI	LTAGE (V	/DC): 2-	4.0		BAT	TERY	Y VOLT	AGE ((VDC	;):				
METER		ļ				MET	ER C	ALIBRA	ATION	N .	Х				
SENSO	SENSOR DRIVE CURRENT (mA)														
	CH 1	CH 2	CH:	3	CH-	4	C	H 5	(CH 6		CH 7		С	H 8
	5.0														
	CH 9	CH 10	0 CH1	1	CH 1	2	C	H 13	C	H 14	ļ	CH 15	5	Cł	1 16
				AS	RECE	VED	DA	ΓΑ							
GENERA	AL CONDITIO	N:	<u> </u>												
POWER	SUPPLY VOL	TAGE (V	'DC):			BAT	TERY	/ VOLT	AGE (VDC	;):				
METER	CALIBRATIO	N				REP	LACE	D BAT	TERIE	ES .		YES		N	10
SENSO	R DRIVE CUR	RENT (m.	A)				·············							·····	
	CH 1	CH 2	CH	3	CH 4	4	С	H 5	(CH 6		CH 7		C	H 8
							~				`				
	CH 9	CH 10	CH 1	1	CH 1	2	CI	H 13	С	H 14	,	CH 15	5	CH	H 16

NOTES:			***************************************					······································							
		TE	ST EQUIPME	ENT L	LIST - CA	LIBR	ATIO	N STAT	TION	#	6	7.	,		
DII#	MANUFACT	TURER	MODEL	SE	RIAL#		Di	ESCRIP	TION			CAL DA	TE	DUE	DATE
228	DYTRAN II		4515		117			SOR SIM		R		06/07/04			07/05
464 418	KENWO(KIETHLE	T I	CS-4135 197A	f	100491			SCILLOS		-0		07/28/04	1		28/05
564	INSTE	1	197A GFG 8020H		765030 675835			TAL MULT TION GEI				06/23/04 12/28/04	- 1		23/05 28/05
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	`	0, 0 0020,		0,0000		7 0710	11011 01	V (7-()	On		12200-	'	1272	.0/00
(1) 10 5				· · · · · · · · · · · · · · · · · · ·		ļ									
	IVED / AS RETURN					_									
1 = IN TOLERANCE. NO ADJUSTMENTS 3= OUT OF TOLERANCE 5 = REPAIRED AND CALIBRATED 2 = IN TOLERANCE. BUT ADJUSTED 4 = REPAIR RECOMMENDED 6 = NON-REPAIRABLE. REPLACEMENT RECOMMENDED															
THIS CALIBI	RATION WAS PERF	ORMED IN A									:PLA(JEMENI KEC	, OWNY	ENUED	
AND IS TRA	CEABLE TO THE N	IST (NATION)	AL INSTITUTE OF	STAND	DARDS AND	TECHN	OLOGY)	. 100 ,0	012 1					
THIS CERTI	FICATE SHALL NOT	T BE REPRO	DUCED EXCEPT IN	ı FUĻĻ	, WITHOUT	THE WF	RITTEN	PERMISSI	ON FRO	M DY	RAN	INSTRUMEN	TS, IN	C.	
	RATION TECH		St.	Ju	Tes	67			TEST				/18/0		
		4	L. ROJAS						REC	ALL.	DAT	E: 05,	/18/0	16	
7L. ROJAS / RECALL DATE: 05/18/06															

Dytran instruments, inc.


21592 Marilla St. Chatsworth, CA 91311 Ph: 818-700-7818 Fax 818-700-7880 www.dytran.com_email: info@dytran.com

page 1 of 1

CALIBRATION CERTIFICATE VOLTAGE MODE ACCELEROMETER

CUSTOMER:	ENSCO, INC.		TEST REPORT	#: 12361	5/18/05	
PURCHASE ORDER #:	USCHASE ORDER #: 85737 SALE			PROCEDURE:	TP3002	
MODEL: 3030B4	SERIAL #:	12361	RANGE, F.S. (g's): +/- 500		
	-CALIBRATION [1]	AS REC	CEIVED CODE	AS RETURNED	CODE	
REF. SENSITIVITY (mV/g) [2			TEMP (°C): 22	HUMIDITY (%):	38	
FREQUENCY RESPONSE [3]						
FREQUENCY (Hz)	SENSITIVITY (mV	/g) FI	REQUENCY (Hz)	SENSITIVITY	(mV/g)	
20	10.10		500	10.10	•	
30	10.10		1000	10.10		
50	10.10		3000	10.10		
100	10.10		5000	10.00		
300	10.10	‡	8000	10.00		
TRANSVERSE SENSITIVITY			10000	10.10		
DISCHARGE TIME CONSTA	. 170/.		BIAS VOLTAGE	(VDC): 8.9	· · · · · · · · · · · · · · · · · · ·	

Amplitude Response

REMARKS:

TEST EQUIPMENT LIST - CALIBRATION STATION # 3									
	MODEL	SERIAL#	DESCRIPTION	CAL DATE	DUE DATE				
	FG-8016G	D685002	FUNCTION GENERATOR	12/28/04	12/28/05				
	GOS-622G	9631068	OSCILLOSCOPE	12/04/04	12/04/05				
		7025037	MULTIMETER	12/04/04	12/04/05				
,		115	SYNTHESIZED CALIBRATOR	02/23/05	02/23/06				
	1		DIGITAL OSCILLOSCOPE	08/17/04	08/17/05				
		1	ACCELEROMETER	06/17/04	06/17/05				
	TE MANUFACTURER INSTEK GOODWILL INST. FLUKE TRIG-TEK NICOLET DYTRAN INST.	TEST EQUIPME MANUFACTURER MODEL INSTEK FG-8016G GOODWILL INST. GOS-622G FLUKE 45 TRIG-TEK 346B NICOLET 3091	TEST EQUIPMENT LIST - CA MANUFACTURER MODEL SERIAL # INSTEK FG-8016G D685002 GOODWILL INST. GOS-622G 9631068 FLUKE 45 7025037 TRIG-TEK 346B 115 NICOLET 3091 85D01977	TEST EQUIPMENT LIST - CALIBRATION STATION # 3 MANUFACTURER MODEL SERIAL # DESCRIPTION INSTEK FG-8016G D685002 FUNCTION GENERATOR GOODWILL INST. GOS-622G 9631068 OSCILLOSCOPE FLUKE 45 7025037 MULTIMETER TRIG-TEK 346B 115 SYNTHESIZED CALIBRATOR NICOLET 3091 85D01977 DIGITAL OSCILLOSCOPE	TEST EQUIPMENT LIST - CALIBRATION STATION # 3 MANUFACTURER MODEL SERIAL # DESCRIPTION CAL DATE INSTEK FG-8016G D685002 FUNCTION GENERATOR 12/28/04 GOODWILL INST. GOS-622G 9631068 OSCILLOSCOPE 12/04/04 FLUKE 45 7025037 MULTIMETER 12/04/04 TRIG-TEK 346B 115 SYNTHESIZED CALIBRATOR 02/23/05 NICOLET 3091 85D01977 DIGITAL OSCILLOSCOPE 08/17/04				

[1] AS RECEIVED / AS RETURNED CODES:

1 = IN TOLERANCE. NO ADJUSTMENTS 4 = OUT OF TOLERANCE > 5%

7 = UNIT NON-REPAIRABLE, RECOMMEND REPLACEMENT

2 = IN TOLERANCE, BUT ADJUSTED

5 = REPAIR REQUIRED

8 = UNIT SERVICEABLE WITH CURRENT CALIBRATION DATA

3 = OUT OF TOLERANCE < 5%

6 = REPAIRED AND CALIBRATED

[2] THE REFERENCE SENSITIVITY IS MEASURED AT 100 Hz. 1G RMS

[3] THIS CALIBRATION WAS PERFORMED IN ACCORDANCE WITH MIL-STD-45662A. ANSI/NCSL Z540-1-1994, ISO 10012-1 USING THE

BACK-TO-BACK COMPARISON METHOD PER ISA RP37 2 AND IS TRACEABLE TO THE NIST THROUGH TEST REPORT # 822/270316-04 DUE 06-17-05 ESTIMATED UNCERTAINTY OF CALIBRATION: 2% FROM 5-50 Hz. 1% FROM 100-2000 Hz. 2% FROM 2 5-10 kHz.

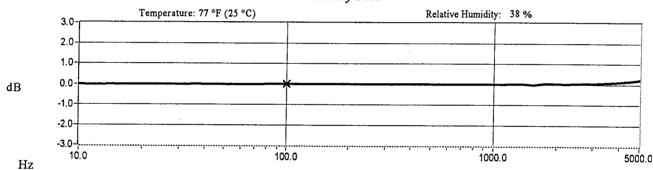
THIS CERTIFICATE SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN PERMISSION FROM DYTRAN INSTRUMENTS, INC.

CALIBRATION TECHNICIAN:	H= (e (1)	TEST DATE:	05/18/05
HUNG LE		RECALL DATE:	05/18/06

Model Number:	J353B01
Serial Number:	05259

ICP® Accelerometer

Method:


Back-to-Back Comparison Calibration

Manufacturer:

Calibration Data

Sensitivity @ 100.0 Hz 19.69 Output Bias mV/gVDC (2.008) $mV/m/s^2$) Transverse Sensitivity % Discharge Time Constant 0.8 seconds Resonant Frequency kHz 41.7

Sensitivity Plot

Data Points

Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev. (%)
10.0	-0.2	300.0	0.1
15.0	-0.2	500.0	0.1
30.0	-0.2	1000.0	0.1
50.0	-0.2	3000.0	0.6
REF. FREQ.	0.0	5000.0	2.6

Mounting Surface: Stainless Steel w/Silicone Grease Coating Fastener: Stud Mount Acceleration Level (rms): 10.0 g (98.1 m/s)?

Fixture Orientation: Vertical

cement at low frequencies. If the listed level cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g) = 0.010 x (freq)³.

The gravitational constant used for calculations by the calibration system is; 1 g = 9.8066 m/s³.

Condition of Unit

As Found:

As Left:

New Unit, In Tolerance

Notes

- Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055.
- 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025.
- See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%.

Cert No 1862.01

Technician:

3425 Walden Avenue Depew, NY 14043

TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

10/29/04

J353B01 Model Number: Serial Number: 95259 ICP® Accelerometer Method: Back-to-Back Comparison Calibration Description: Manufacturer: **PCB** Calibration Data Output Bias **VDC** Sensitivity @ 100.0 Hz 8.5 19.34 mV/g Transverse Sensitivity (1.972 mV/m/s^2) % kHz Discharge Time Constant 0.9 Resonant Frequency seconds Sensitivity Plot Relative Humidity: 38 % Temperature: 77 °F (25 °C) đΒ -2.0-100.0 5000.0 10.0 Hz Data Points Frequency (Hz) Frequency (Hz) Dev. (%) Dev. (%) 10.0 -0.3300.0 0.1 15.0 -0.2 500.0 0.1 30.0 -0.2 1000.0 0.1 50.0 -0.1 3000.0 0.7 5000.0 REF. FREQ. 0.0 Mounting Surface: Stainless Steel w/Silicone Grease Coating Fastener: Stud Mount Acceleration Level (rms): 10.0 g (98.1 m/s²)² Fixture Orientation: Vertical nt at low frequencies. If the listed level cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g) = 0.010 x (freq)².

The gravitational constant used for calculations by the calibration system is; 1 g = 9.8066 m/s². Condition of Unit As Found: n/a As Left: New Unit, In Tolerance Notes 1. Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Mary Warren Technician:

Depew, NY 14043

TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

cal4 - 3181907326.18

J353B01 Serial Number: 95603 ICP® Accelerometer Back-to-Back Comparison Calibration Description: Method: **PCB** Manufacturer: Calibration Data **Output Bias VDC** Sensitivity @ 100.0 Hz 20.66 mV/g Transverse Sensitivity 1.5 (2.107) $mV/m/s^2$) 42.5 kHz Resonant Frequency Discharge Time Constant seconds Sensitivity Plot Relative Humidity: 34 % Temperature: 69 °F (21 °C) 1.0 0.0 dB -1.0 -2.0 -3.0-100.0 1000.0 5000.0 Hz Data Points Frequency (Hz) Dev. (%) Dev. (%) Frequency (Hz) -0.310.0 0.1 300.0 15.0 -0.0500.0 0.3 30.0 0.1 1000.0 -0.250.0 0.1 3000.0 -0.45000.0 REF. FREQ. 0.0 1.6 Mounting Surface: Stainless Steel w/Silicone Grease Coating Acceleration Level (ms):

10.0 g (98.1 m/s²)

The acceleration level may be limited by shaker displacement at low frequencies. If the listed level cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g)

The gravitational constant used for calculations by the calibration system is; 1 g = 9.8066 m/s². Condition of Unit As Found: n/a As Left: New Unit, In Tolerance Notes Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055. 1. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%.

PAGE I of I

Depew, NY 14043 FAX: 716-685-3886 TEL: 888-684-0013 · www.pcb.com

cal4 - 3182385060.0

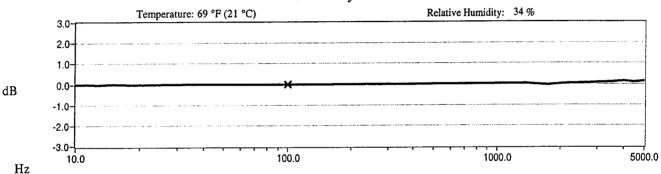
11/03/04

Model Number:	J353B01
---------------	---------

Serial Number:

ICP® Accelerometer Description:

Method:


Back-to-Back Comparison Calibration

Manufacturer:

Calibration Data

Output Bias 8.5 **VDC** Sensitivity @ 100.0 Hz 20.49 mV/g (2.090 mV/m/s^2) Transverse Sensitivity % 42.5 kHz Resonant Frequency Discharge Time Constant 0.7 seconds

Sensitivity Plot

Data Points

Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev. (%)
10.0	0.0	300.0	0.1
15.0	0.1	500.0	0.2
30.0	0.1	1000.0	0.3
50.0	0.0	3000.0	0.8
REF. FREQ.	0.0	5000.0	1.6

Mounting Surface: Stainless Steel w/Silicone Grease Coating Fastener: Stud Mount Acceleration Level (rms)*: 10.0 g (98.1 m/s²)²

The acceleration Level (rms): 10.0 g (98.1 m/s²)?

The acceleration level may be limited by shaker displacement at low frequencies. If the listed level cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g)

The gravitational constant used for calculations by the calibration system is; 1 g = 9.8066 m/s².

Condition of Unit

As Found:

As Left:

New Unit, In Tolerance

Notes

- Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055.
- This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025.
- See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%.

Technician:

John Pitruzzella

Date:

VIBRATION DIVISION

3425 Walden Avenue

Depew, NY 14043

FAX: 716-685-3886

cal4 - 3182385180.01

			•	Per ISO 1606	3-21	
Model Number:	J353	B01				
Serial Number:	976	87				
Description:	ICP® Acceleror	neter	Method:	Back-to-Back	c Comparison Cal	libration
Manufacturer:	PCB					
		~	.			
		Calibratio				
Sensitivity @ 100.0 H	Iz 20.21	mV/g	Output Bias		8.6 VDC	3
	(2.061	$mV/m/s^2$)	Transverse Sen	sitivity	1.3 %	
Discharge Time Consta	ant 0.8	seconds	Resonant Freq	luency	72.5 kHz	
		a				
	Temperature: 72 °F (22	Sensitiv	•	Relative Humidity: 4	3 %	
3.0	remperature. 72 F (22					
2.0-						
1.0						
dB 0.0-		*				
-1.0						:
-2.0						
10.0 Hz		100.0	,	1000.0		5000.0
п		Data P	oints			
Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev. (%)			
10.0	-0.2	300.0	0.1	,		
15.0	-0.1	500.0	0.1			
30.0	-0.1	1000.0	0.1			
50.0	-0.0	3000.0	0.6			
REF. FREQ.	0.0	5000.0	2.0			
	ilicone Grease Coating Fastener: Stad M	lount	Fixtur	re Orientation: Vertical		
Acceleration Level (rms): 'The acceleration level may be limited by	10.0 g (98.1 m/s²)² y shaker displacement at low frequencies. I	f the listed level cannot be obtained, the o The gravitational cons	calibration system uses the following stant used for calculations by the	g formula to set the vibration ampli e calibration system is; 1 g =	itude; Acceleration Level (g) = 0.01 9.8066 m/s ² .	10 x (freq)2.
		Condition	of Unit			
As Found: n/a						
As Left: New L	Jnit, In Tolerance					
		Note				
1. Calibration is N	HST Traceable thru F hall not be reproduced	Project 822/267400	and PTB Traceab	ole thru Project 1	055. otronics Inc	
 Calibration is per 	rformed in compliance	with ISO 9001, ISO	10012-1, ANSI/N	ICSL Z540-1-199	4 and ISO 17025.	
 See Manufacture 	r's Specification Sheet	for a detailed listing	of performance sp	ecifications.		
5. Measurement un	certainty (95% confide 2.0%, 10-99 Hz; +/-	ence level with covers	age factor of 2) for :: +/- 1.0%, 2-10	r frequency ranges kHz: +/- 2.5%.	tested during call	ibration are a
		n Koetzle	., .,	Date:	10/26/04	
Technician:	Ala		TOTOONIC	INC		
	•	PLB PIE	ZUTKUNIC.	ב		
ACCREDITED Cert No 1862.01	34	VIE 125 Walden Avenue	BRATION DIVISION Depew, NY 1404			
AGE 1 of 1	TEL: 888-68		•	ww.pcb.com		cal2 - 31816888

PAGE 1 of 1

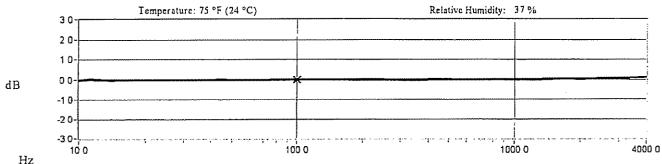
cal2 - 3181688885.80

Model Number: J353B01 Serial Number: 97688 ICP® Accelerometer Description: Method: Back-to-Back Comparison Calibration Manufacturer: Calibration Data Sensitivity @ 100.0 Hz **Output Bias** 20.41 **VDC** (2.082) $mV/m/s^2$) Transverse Sensitivity 1.1 % Discharge Time Constant seconds Resonant Frequency 72.4 kHz Sensitivity Plot Temperature: 72 °F (22 °C) Relative Humidity: 43 % 3.0 1.0 0.0 dΒ -1.0 -2.0 -3.0-100.0 10.0 1000.0 5000.0 Hz Data Points Frequency (Hz) Dev. (%) Frequency (Hz) Dev. (%) 10.0 0.1300.0 0.0 15.0 -0.1 500.0 0.1 30.0 -0.1 1000.0 0.1 50.0 -0.0 3000.0 0.6 REF. FREQ. 0.0 5000.0 1.7 el cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceles 2 The gravitational constant used for calculations by the calibration system is; $1 g = 9.8066 \text{ m/s}^2$. Condition of Unit As Found: As Left: New Unit, In Tolerance Notes Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician:

PAGE 1 of 1

3425 Walden Avenue Depew, NY 14043 TEL: 888-684-0013 · FAX: 716-685-3886 · www.pcb.com

cal2 - 3181639165.01


~	Calibration	Certificate Per ISO	~ 16063-21

Model Number: J353B31 Serial Number: 97690 ICP® Accelerometer Description: Method: Back-to-Back Comparison Calibration Manufacturer:

Calibration Data

Sensitivity @ 100.0 Hz Output Bias 9.2 **VDC** 51.4 mV/g $mV/m/s^2$) Transverse Sensitivity (5.24)0.5 % Discharge Time Constant Resonant Frequency 06 seconds 36 3 kHz

Sensitivity Plot

Data Points

Frequency (Hz)	Dev (%)	Frequency (Hz)	Dev. (%)
10 0	-0.4	300.0	-0 1
15.0	-0.2	500.0	10
30 0	-0 1	1000 0	0 1
50 0	-0 1	3000.0	08
REF FREO	0 0	4000 0	13

Mounting Surface: Stainless Steel wildiacone Chease Coating Fasteror: Stad Mount Fixture Orizotations vertical
Activity and Level (may): 10.0 g (98 t inte')

The acceleration level may be limited by shaker displacement at low frequencies. If the listed level cannot be obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g) = 0.810 x (freq):

The gravitational constant used for extentations by the calibration system is; 1 g × 9 8066 m/s²

Condition of Unit

As Found: n/a

New Unit, In Tolerance As Left:

Notes

- Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055.
- 2 This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- 3 Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025
- 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications
- 5 Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1 0%, 2-10 kHz; +/- 2 5%

Robert Zsebehazy Technician:

Depew, NY 14043 3425 Walden Avenue FAX: 716-685-3886 www.pcb.com TEL: 888-684-0013

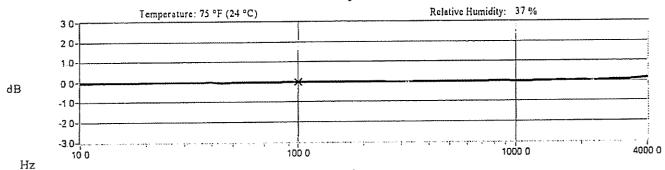
cal4 - 3181256360.45

~	Calibration	Certificate -	.,
		Per ISO 160	63-2

Model Number:	J353B31		
Serial Number:	97691		

ICP® Accelerometer Description:

Method:


Back-to-Back Comparison Calibration

PCB Manufacturer:

Calibration Data

Sensitivity @ 100.0 Hz	49.9 mV/g	Output Bias	9.2 VDC
	$(5.08 mV/m/s^2)$	Transverse Sensitivity	21 %
Discharge Time Constant	09 seconds	Resonant Frequency	35 0 kHz

Sensitivity Plot

Data Points

Frequency (Hz)	Dev (%)	Frequency (Hz)	Dev. (%)
10 0	-0 4	300.0	-0 1
15 0	-0 3	500 0	0 1
30 0	-0 2	1000 0	0.1
50 0	-0.2	3000 0	0 8
REF FREQ	00	4000 0	18

Mounting Surface: Stainlers Steel w.Silvene Greate Cosing Fartmer: Stud Mount Foxture Orientation : vertical Acceleration Level (ms): 10.0 g (88 l ms)?

The scalaration level may be following formula to set the vibration amplitude; Acceleration Level (g) = 0.010 a (fireq)?

The scalaration level may be forized by thaker displacement allow (requrseins of the little level empotibe obtained, the calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g) = 0.010 a (fireq)?

The scalaration level may be forized by thaker displacement allow (requrseins of the little level empot be calibration system uses the following formula to set the vibration amplitude; Acceleration Level (g) = 0.010 a (fireq)?

The gravitational constant used for calculations by the calibration system is: 1 g = 9 8066 m/s?

Condition of Unit

n/a_ As Found:

As Left:

New Unit, In Tolerance

Notes

- Calibration is NIST Traceable thru Project 822/267400 and PTB Traceable thru Project 1055.
- This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc
- Calibration is performed in compliance with ISO 9001, ISO 10012-1, ANSI/NCSL 2540-1-1994 and ISO 17025
- See Manufacturer's Specification Sheet for a detailed listing of performance specifications
- Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2 0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2 5%.

Technician:

Robert Zsebehazy

10/21/04

Depew, NY 14043 3425 Walden Avenue

TEL: 888-684-0013 - FAX: 716-685-3886 www pcb.com rel4 - 1181257559,51

~	Cal	lib	rati	ion	$C\epsilon$	ertit	icate	~
						J	Per ISO	16063-21

Model Number:	J353	3B31		
Serial Number:	97692			
Description:	ICP® Accelero	meter	Method: Back-to-	Back Comparison Calibration
Manufacturer:	PCB			
		Calibratio	on Data	
Sensitivity @ 100.0 Hz	50.2	mV/g	Output Bias	9 2 VDC
	(5.12	$mV/m/s^2$)	Transverse Sensitivity	0.4 %
Discharge Time Constant	0 8	seconds	Resonant Frequency	35.5 kHz
		g ···	to ni	
ī	emperature: 75 °F (2-	Sensitiv 4 °C)	ity Plot Relative Humidi	ty: 37 %
30				
20-		;		
10-		į,		
3		1		
-2 0-			and the same of th	
	oge og om om sammeningsom i er er gerder er g	√ « f «√ 	ner ans si neglección si escribatos y escribis se es y y menor menygrational per es seguindo	The first section of the contract of the contr
10 0 Hz	, , , , ,	100 0		1000 0 4000
		Data P	Points	
Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev (%)	
10.0	-0 2	300.0	-0.1	
15 0	-0 3	500 0	0.1	
30.0	-0 2	1000 0	0 1	
50.0	-0 1	3000.0	0 8	
REF. FREQ.	0 0	4000 0	1 4	
Mounting Surface: Stainless Steel weSikeen	e Greaus Coating Fastmer: Stud	Mount	Fixture Orientation: Vertical	l
Acceleration Level (mm): The acceleration level may be limited by shall	0.0 g. (98.1 m/e ^s) ⁾ ker daplacement at low frequencles	If the listed level cannot be obtained, the The gravitational con	ealthraing system uses the following formula to set the vibr setant used for calculations by the calibration system i	nien amplitude: Acceleration Level (g) = 0.010 x (freq)' s: 1 g = 9 8056 m/s'
		Condition		•
As Found: n/a				
As Left: New Un:	it, In Tolerance			
		Not	tes	
	"Troposhla they	Project 822/267400	and PTB Traceable thru Proj	ject 1055
l Calibration is NIS	of flaceanic min			
2 This certificate shall	ll not be reproduce	d, except in full, with	iout written approval from PCE D 10012-1, ANSI/NCSL Z540-	Piezotronics, Inc

R.Z. Date: _ 10/21/04

Technician:

VIBRATION DIVISION

Robert Zsebehazy

3425 Walden Avenue Depew, NY 14043

FAX: 716-685-3886 www pcb com TEL: 888-684-0013

cal4 - 3161257794.36

OMEGADYNE INC.

PRESSURE TRANSDUCER FINAL CALIBRATION

0 - 200.00 PSIG Excitation 15.000 Vdc

Job: Serial: 148187

Model: PX41C1-200G10T Tested By: BOB

Date: 1/19/2004 Temperature Range: 60 to 160 F

Calibrated: 0.00 - 200.00 PSIG Specfile: PX41-10T

Pressure PSIG	Unit Data Vdc
0.00	0.0003
100.00	5.0142
200.00	10.0067
100.00	5.0157
0.00	0.0004

Balance 0.0003 Vdc Sensitivity 10.0064 Vdc

ELECTRICAL LEAKAGE: PASS

PRESSURE CONNECTION/FITTING: 1/4-18 NPT MALE

ELECTRICAL WIRING/CONNECTOR: PIN A = +OUTPUT
PIN B = *-OUTPUT

PIN C = -INPUT (EXC)

PIN C = -INPUT (EXC)PIN D = +INPUT (EXC)

This Calibration was performed using Instruments and Standards that are traceable to the United States National Institute of Standards Technology.

S/NDescription Reference Cal Cert Range C-2020 PPB Pressure Console 0 - 500 C-2020 lbs C-2020 UUT Unit Under Test US36087645 HP34401A DMM C-2485 3146A22561 HP34401A DMM STD Pressure Monitor

Q.A. Representative:

This transducer is tested to & meets published specifications. After final calibration our products are stored in a controlled stock room & considered in bonded storage. Depending on environment & severity of use factory calibration is recommended every one to three years after initial service installation date

Omegadyne, Inc., 149 Stelzer Court, Sunbury, OH 43074 (740) 965-9340 http://www.omegadyne.com email: info@omegadyne.com (800) USA-DYNE

OMEGADYNE INC.

PRESSURE TRANSDUCER FINAL CALIBRATION

200.00 PSIG Excitation 15.000 Vdc

Serial: 148201 Job:

Tested By: BEN Model: PX41C1-200G10T

Temperature Range: 60 to 160 F Date: 6/27/03 Specfile: Px41-10T.spf

200.00 PSIG 0.00 -Calibrated:

Unit Data Pressure Vdc 0.002 0.00 100.00 5.004 9.998 200.00 5.005 100.00 - 0.003 0.00

Balance - 0.002 Vdc Sensitivity 10.000 Vdc

ELECTRICAL LEAKAGE: PASS

PRESSURE CONNECTION/FITTING: 1/4-18 NPT MALE

ELECTRICAL WIRING/CONNECTOR: PIN A +OUTPUT

-OUTPUT PIN B PIN C -INPUT PIN D +INPUT PINS E&F NC

This Calibration was performed using Instruments and Standards that are traceable to the United States National Institute of Standards Technology.

Reference Cal Cert Range Description 0078/90-03 1000 PSI DRUCK STD 0 - 1000 lbs C-2501 C-2501

Unit Under Test C - 2470MY41005 AT34970A DMM UUT

Date: 6-27-03 Q.A. Representative: Date: 6-27-05
This transducer is tested to & meets published specifications. After final calibration our products are stored in a controlled stock room & considered in bonded storage. Depending on environment & severity of use factory calibration is recommended every one to three years after initial service installation date

Omegadyne, Inc., 149 Stelzer Court, Sunbury, OH 43074 (740) 965-9340 http://www.omegadyne.com email: info@omegadyne.com (800) USA-DYNE

OMEGADYNE INC.

PRESSURE TRANSDUCER FINAL CALIBRATION

0 - 200.00 PSIG Excitation 28.000 Vdc

Job: Serial: 148202

Model: PX41C1-200G10T Tested By: BEN

Date: 6/27/03 Temperature Range: 60 to 160 H

Calibrated: 0.00 - 200.00 PSIG Specfile: Px41-10T.spf

Pressure	Unit Data	
PSIG	Vdc	
0.00	0.000	
100.00	5.009	
200.00	10.000	
100.00	5.010	
0.00	- 0.001	

Balance 0.000 Vdc Sensitivity 10.000 Vdc

ELECTRICAL LEAKAGE: PASS

PRESSURE CONNECTION/FITTING: 1/4-18 NPT MALE

ELECTRICAL WIRING/CONNECTOR: PIN A +OUTPUT

PIN B -OUTPUT
PIN C -INPUT
PIN D +INPUT
PINS E&F NC

This Calibration was performed using Instruments and Standards that are traceable to the United States National Institute of Standards Technology.

S/N Description Range Reference Cal Cert

S/N Description Range Reference Cal Cet 0078/90-03 1000 PSI DRUCK STD 0 - 1000 lbs C-2501 C-2501 MY41005 AT34970A DMM UUT Unit Under Test C-2470

Q.A. Representative: Date: (-Z7-03

This transducer is tested to & meets published specifications. After final calibration our products are stored in a controlled stock room & considered in bonded storage. Depending on environment & severity of use factory calibration is recommended every one to three years after initial service installation date

Omegadyne, Inc., 149 Stelzer Court, Sunbury, OH 43074 (740) 965-9340 http://www.omegadyne.com email: info@omegadyne.com (800) USA-DYNE

GENERAL INFORMATION: WK-SERIES STRAIN GAGES

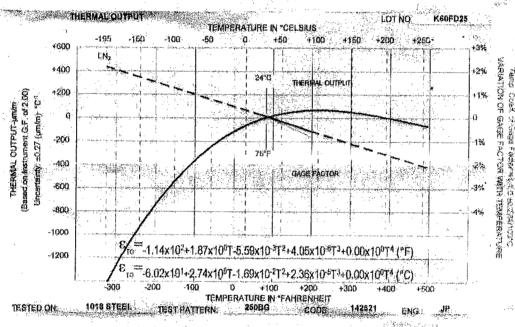
GENERAL DESCRIPTION: WK-Series gages are a family of fully encapsulated K-alley strain gages used in both experimental stress analysis and transducer applications. These gages have integral high-endurance lead ribbons with a backing and encapsulation matrix consisting of a high-temperature epoxy-phenoitic resin system reinforced with glass fiber.

TEMPERATURE RANGE: -452° to +550° F(-268° to +290° C) for continuous use in static measurements. Useful to +700° F (+370° G) for short term exposure.

SELF TEMPERATURE COMPENSATION: See data curve below.

STRAIN LIMITS: ±1.5% at room lemperature; ±1.0% at -320° F (-195° C).

FATIGUE LIFE: 10¹ cycles at ±2000;iir/in (mm/m); 10² cycles at ±2200;in/in (mm/m). Langer gage lengths and lower resistances show greater-endurance and less scatter in fatigue life.


BONDING AGENTS: High-temperature epoxy adhesives are recommended for best performance over the entire temperature range.

Micro-Measurements M-Bond 610, 600 and M-Bond GA-60 are particularly compatible with WK-Series gages. Rater to M-M Catalog.

A-110 for information on bonding eigents, and Bulletin B-130 for installation procedures.

LEADWIRE SYSTEM: Two flat, high-endurance leads attached to each tab permit 3-wire or 4-wire systems to be carried directly to the gage, minimizing leadwire errors over the wide useful temperature range of the WK-Series strain gages. Option SP-30 WK-Series gages are supplied with single 0.005 in. (0.13 mm) diameter nickefulial copper wire leads. Option SP-30 reduces fatigue title of WK-Series gages and should not be selected where her evidence is required. Internal tab connections on these gages are made with +770* F (+410* C) solder. Leadwires may be soft soldered, spot-welded or silver soldered. Refer to M-M Bulletin B-132 for information on solders.

G038

TEST PROCEDURES USED BY MICRO-MEASUREMENTS

	***		and the state of t
OPTICAL DEFECT ANALYSIS .		and a war of the control of the control of	. M-M Procedures and Standards
GAGE RESISTANCE AT 2490 AL	UM KAW, ENLY	M M Managarina Simoliking	raceability on Resistance Standards
ACCOUNT LINE AND THE PARTY OF T	division in the second second	Mant proceedute bitect Mist. i	raceadility on Resistance Standards
GAGE PACTUR AT 24°C & 50%	RH WING XIAL BYREAS FIELD POISSON F	RATIO - 6.2005	(Constant Stress Cantilover Method)
TEMPERATURE COEFFICIENT (OF GAGE FACTOR		TSM E-261 (Step Deflection Method)
Tractional at the street and	man management and the finished at 1 Ye 1 1	ケイ・ドード といし はんけんけんけんけん かんきょう さいき	view estat fateb national welloni
INGOMAL BUILDI.		ASTM E-261 (SIOW H)	dating Rata Canting quety Recordadi.
TRANSVERSE SENSITIVITY AT:	24°C AND KOKH	Victoria Para Para Carra	ASTM E-251
CATIONE	State of the state		erran and a William Bathall
PERENDENCE CONTRACTOR			MAS-942 IMOdifacti
STRAIN LIMITS			NAS-042 (Modified)
CARE MURKIERA			· · · · · · · · · · · · · · · · · · ·
GMGE (FILENIAESS)			M-M Procedure
CREEP AND DRIFT.	Tanaka a a a a a a a a a a a a	NALKA KA	ocedure (Similar to NAS 942 Method)
The transfer of the second sec			

NOTE: Gago resistance, dago lactor, temperature coefficient of page factor, thermal cutout, and transferance assisting tening and information messetisting as a compliance and that the contract of the contra

An OMEGA Technologies Company

Certificate of Calibration

Infrared Thermometer

OMEGA Engineering, Inc. certifies that the instrument referenced above has been fully inspected, tested and calibrated prior to shipment in accordance with the instruction manual supplied. OMEGA Engineering further certifies that this instrument meets or exceeds all of the published electrical, mechanical and operational performance characteristics.

All tests and calibrations were performed with instruments, equipment, and standards that are traceable to the U.S. National Institute of Standards and Technology.

Specifically, this instrument is accurate to within:

• ±1% of reading, or 3°F whichever is greater.

Accepted By: Todd Pratt

OMEGA Engineering, Inc., One Omega Drive, Box 4047, Stamford, CT 06907-0047
Tel: (203) 359-1660 • Fax: (203) 359-7811

www.omega.com e-mail: info@omega.com

Acela Brake Disc Test - Post Test Instrumentation Evaluation

Boston, MA May 16th, 2005

Personnel Performing Evaluation: Randall Wingate – Knorr Brake Corporation Frank Hellmer – Knorr Brake Coporation Boris Nejikovsky, ENSCO, Inc Eric Sherrock, ENSCO, Inc Bill Jordan, ENSCO, Inc

1. Visual evaluation

All sensors mounted on the axle and bearing adapters were visually inspected. No physical damage was found. All accelerometers mountings are solid. All bolts are tight.

2. Impact test

The purpose of the test is to verify that accelerometers and the corresponding measurement channels provide the whole required measurement range (i.e. do not saturate). The sensors mounted on the bearing adapters have been mechanically removed for the test. Electrically the sensors were still connected to data acquisition system. The test was performed by subjecting accelerometers to successively higher impacts until the measurement range was reached. The ENSCO triaxial accelerometer (Silicon Design, Inc., Model 2430-100, range +/-100g) was removed and tested on impact. Levels of up to 70 to 80g were observed with no saturation.

3. Vibration test

The purpose of the test is to verify sensor linearity over the frequency range. The test was performed using a portable shaker (Hardy Instruments, Model DI-803) that allows to set amplitude and frequency of vibration in the range 10Hz to 1KHz). The following table shows the test results

ENSCO accelerometer evaluation

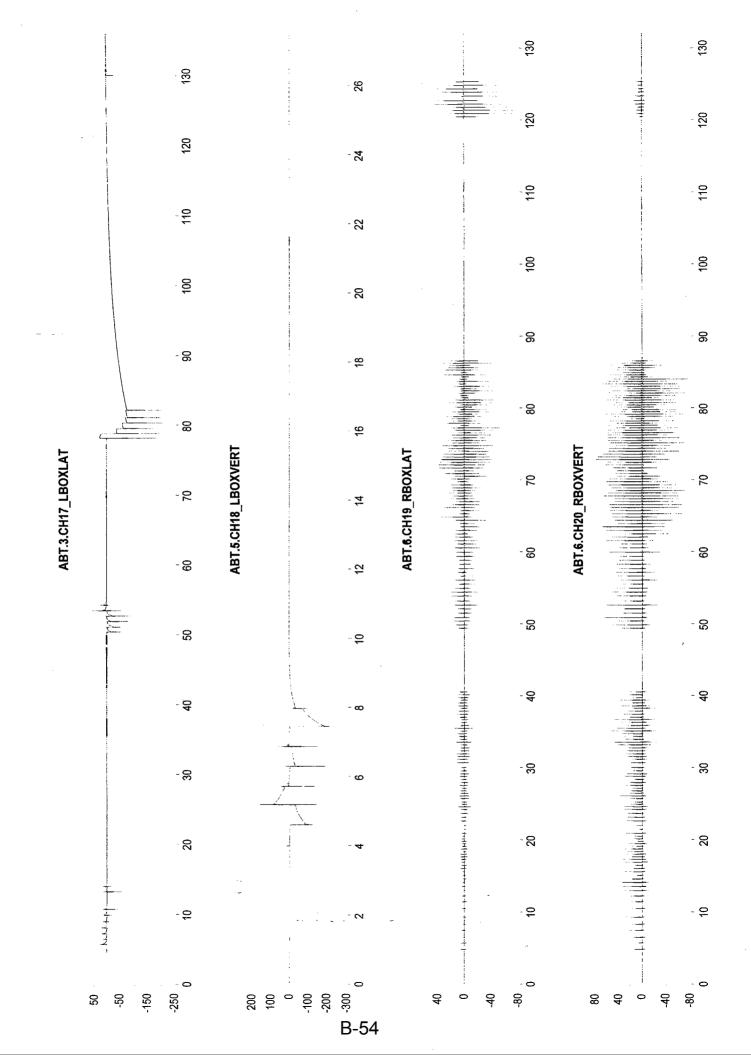
Shaker setting	Shaker setting	ENSCO System	ENSCO System
		measurement	measurement
Freq	Ampl	Freq	Ampl
50Hz	5.0g	50Hz	5g
100Hz	9.97g	100Hz	9.9g
200Hz	9.97g	200Hz	10.1g
500Hz	10g	500Hz	7.5g

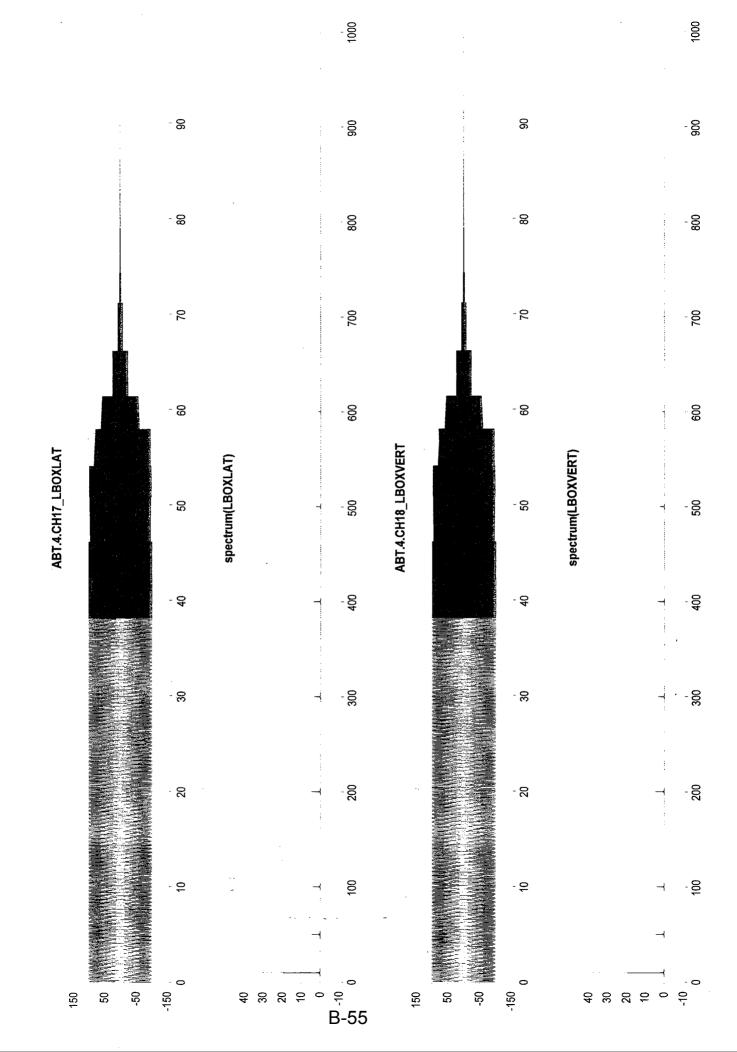
Due to mounting configuration only the Vertical acceleration was verified. The Lateral acceleration will be verified post-test.

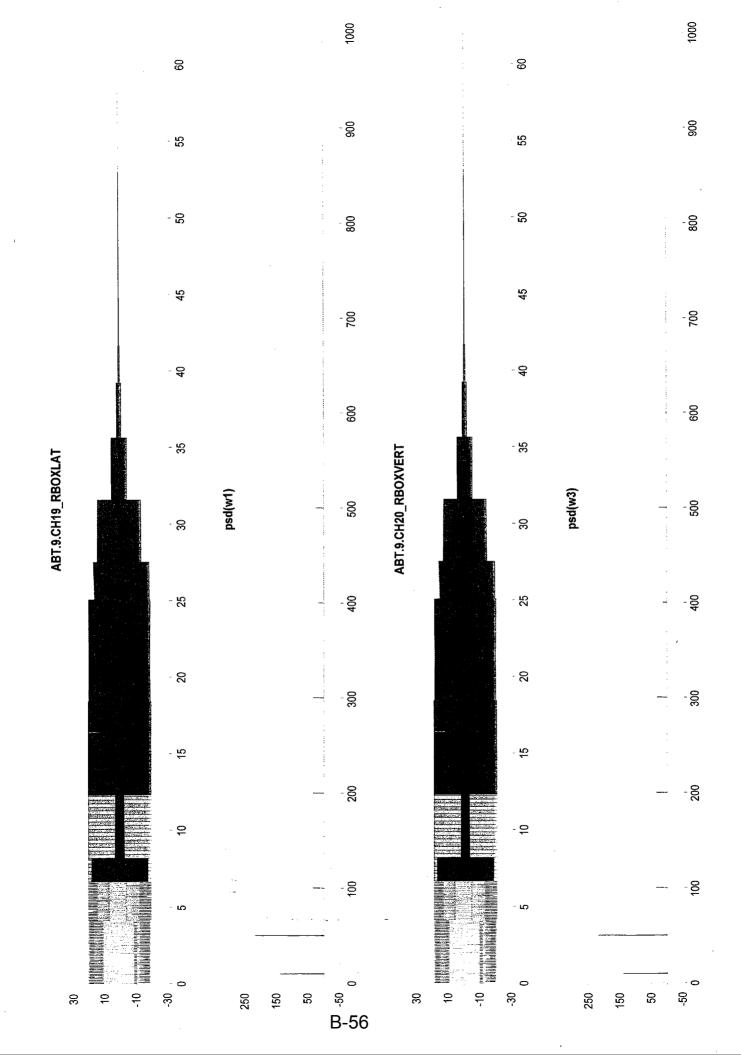
4. Accelerometer channel frequency sweep

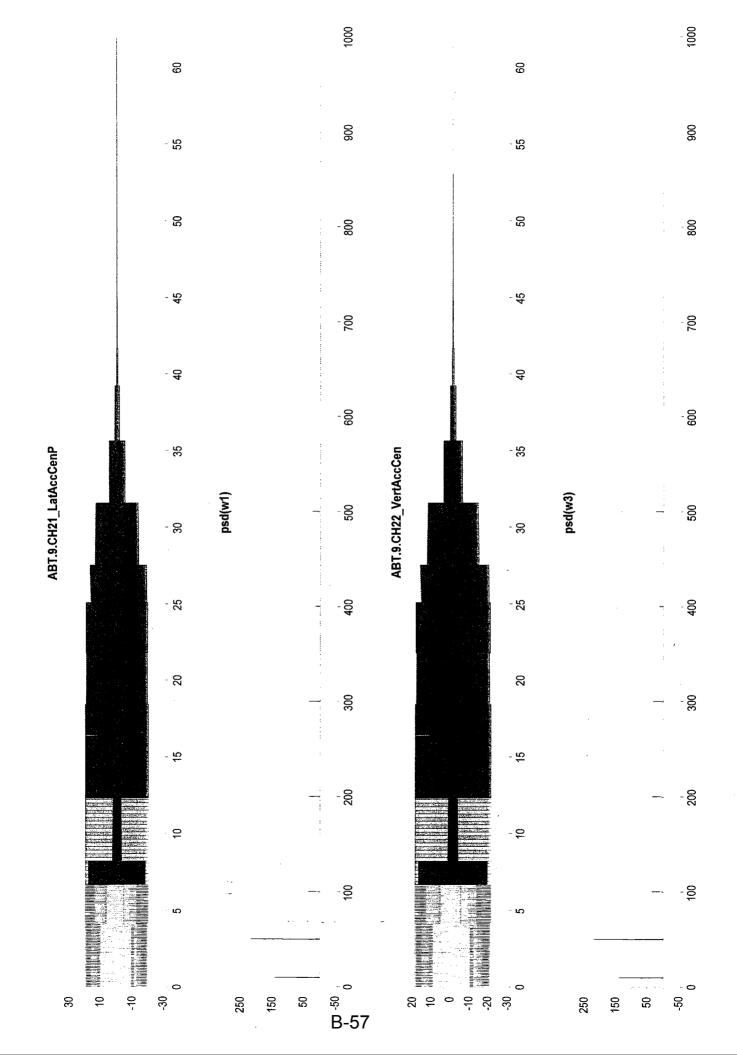
A signal generator (Agilent 3312A serial# MY40027658) was connected to all SCU sensor inputs. A 2V peak to peak sinewave was injected in all inputs. The frequency of a sine waveform was swept through 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200Hz frequencies. The roll-off of all channels is at 500Hz. The roll-off acceleration measured value of the axle mounted accelerometer was 35.32 g. The axle mounted accelerometer has a 19.7 mv/g calibrated scale factor with a 1v peak equals 50.76 g and a measured value of 50.56 g.

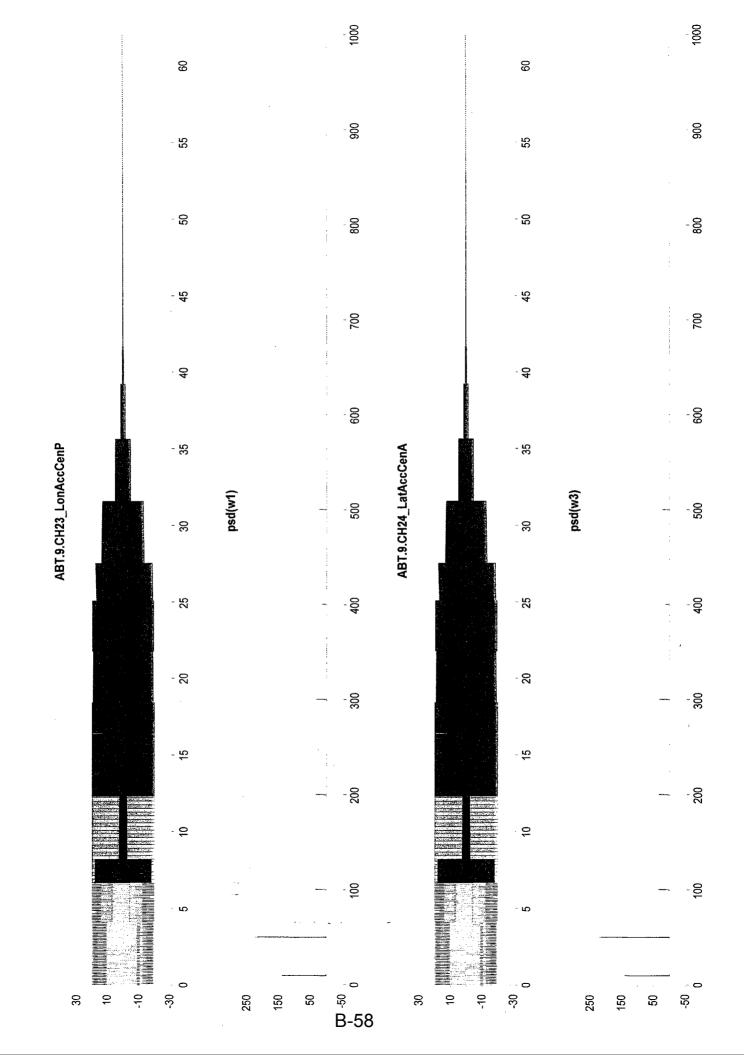
Conclusion: All instrumentation tested as described above performed in an acceptable manner. There is no evidence of any data quality issues.

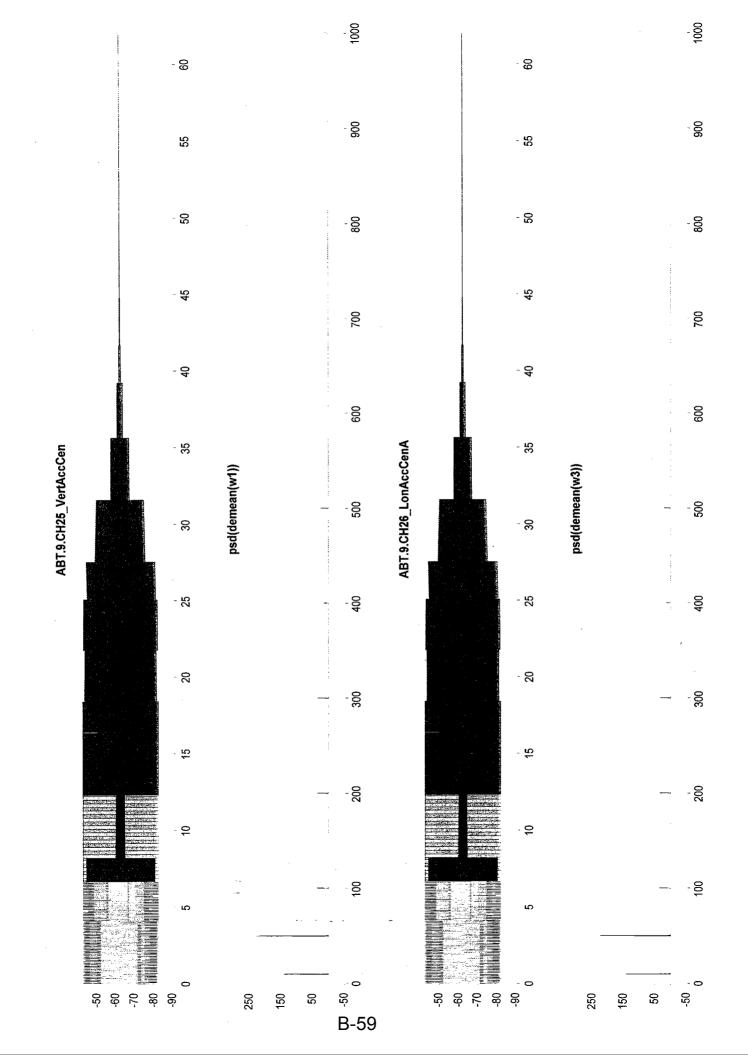

ENSCO, Inc.

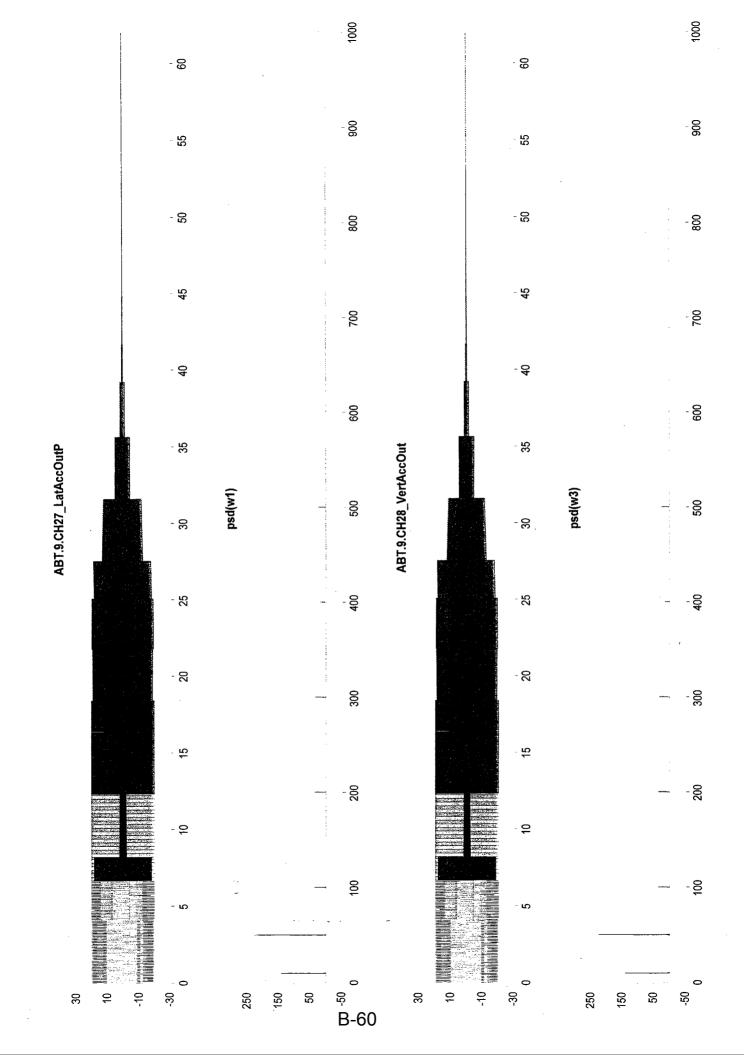

Boris Nejikovsky Chief Engineer

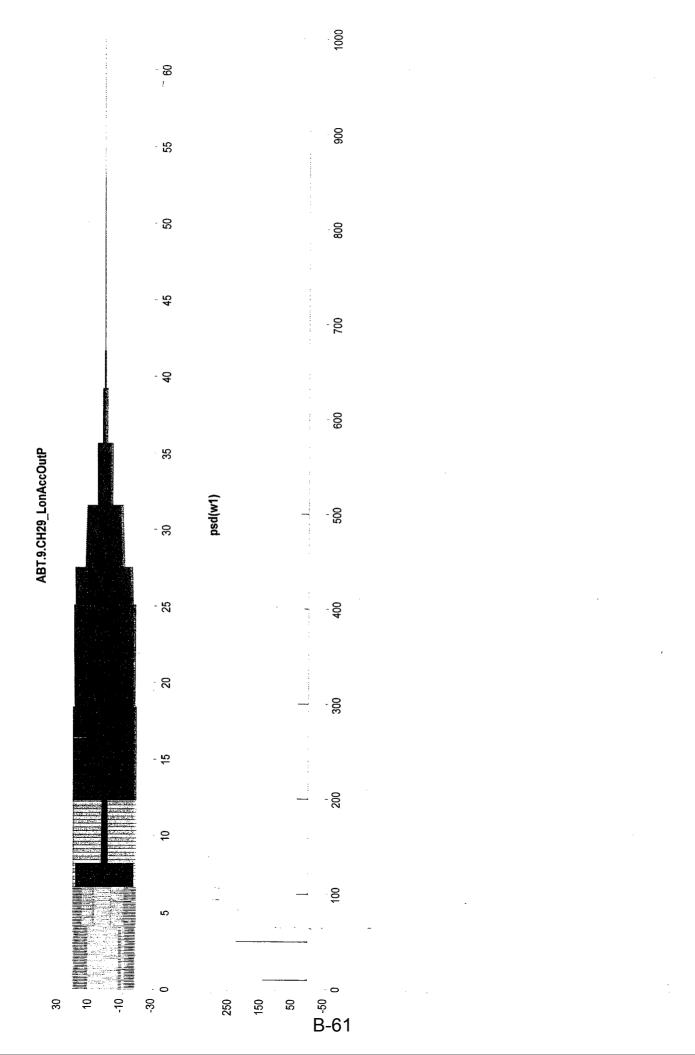

Eric Sherrock Senior Engineer **Knorr Brake Corporation**

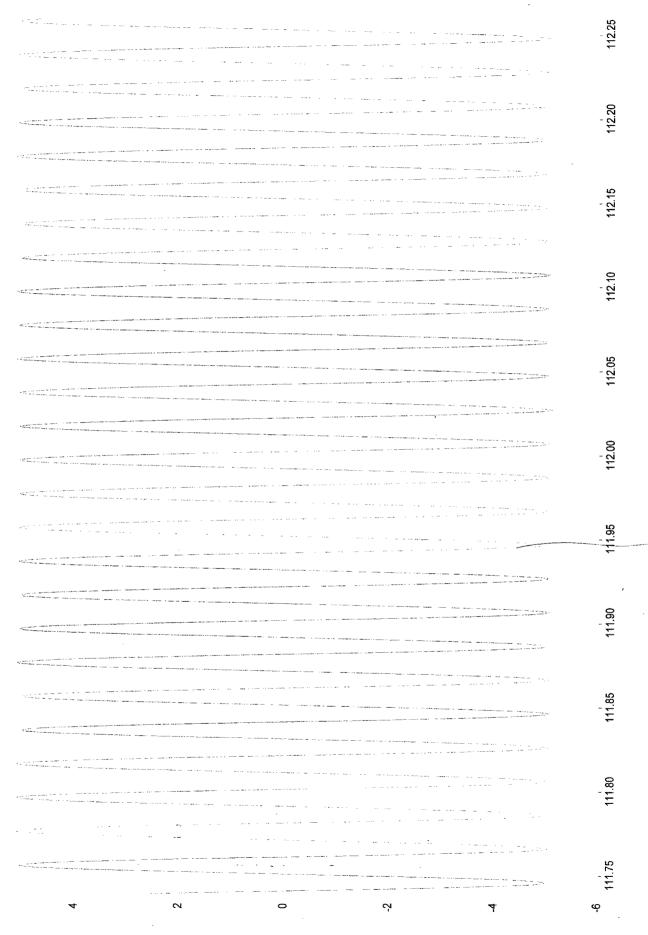

Randall Wingate Test Engineer


Frank Hellmen Test Engineer









9

2

B-63

1000

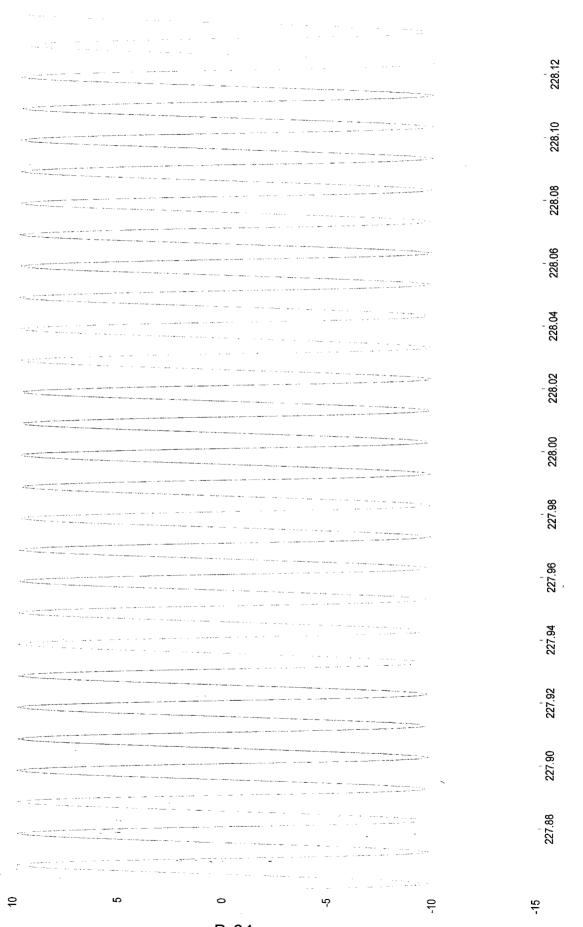
- 06

- 800

200

- 00

200

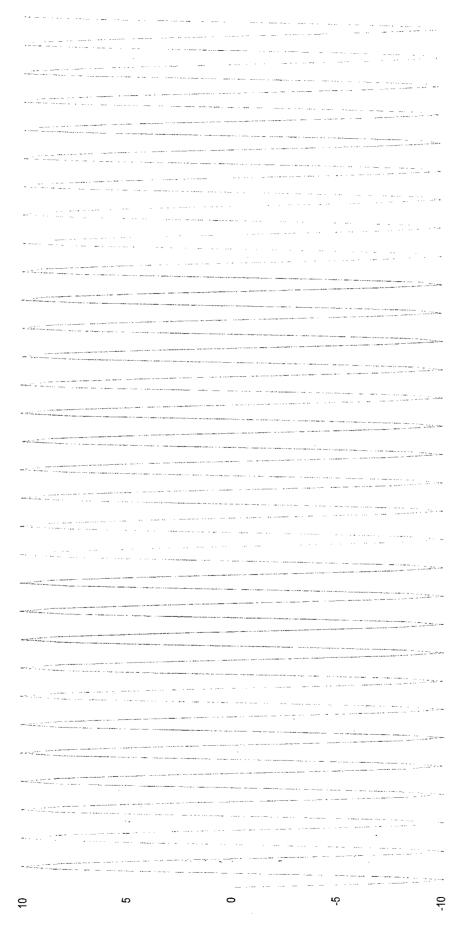

400

300

- 200

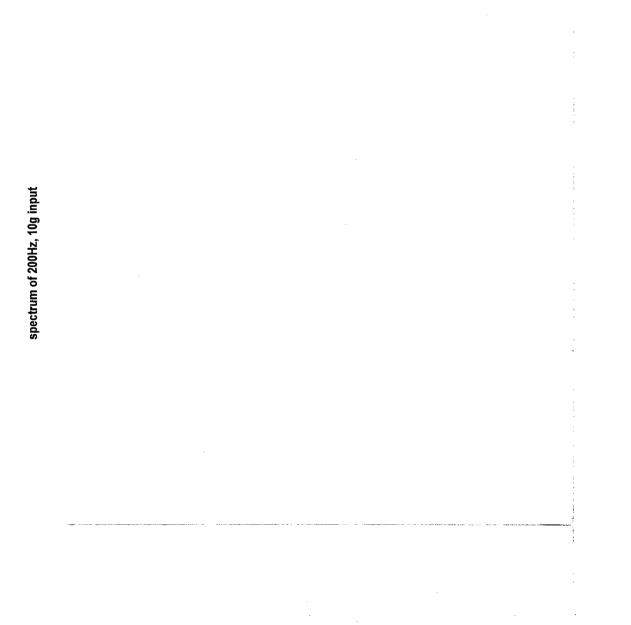
- 00

5


- 0

0

10


B-65

310.070

310.050

- 200

- 00

- 0

0

10

10

389.960

- 06

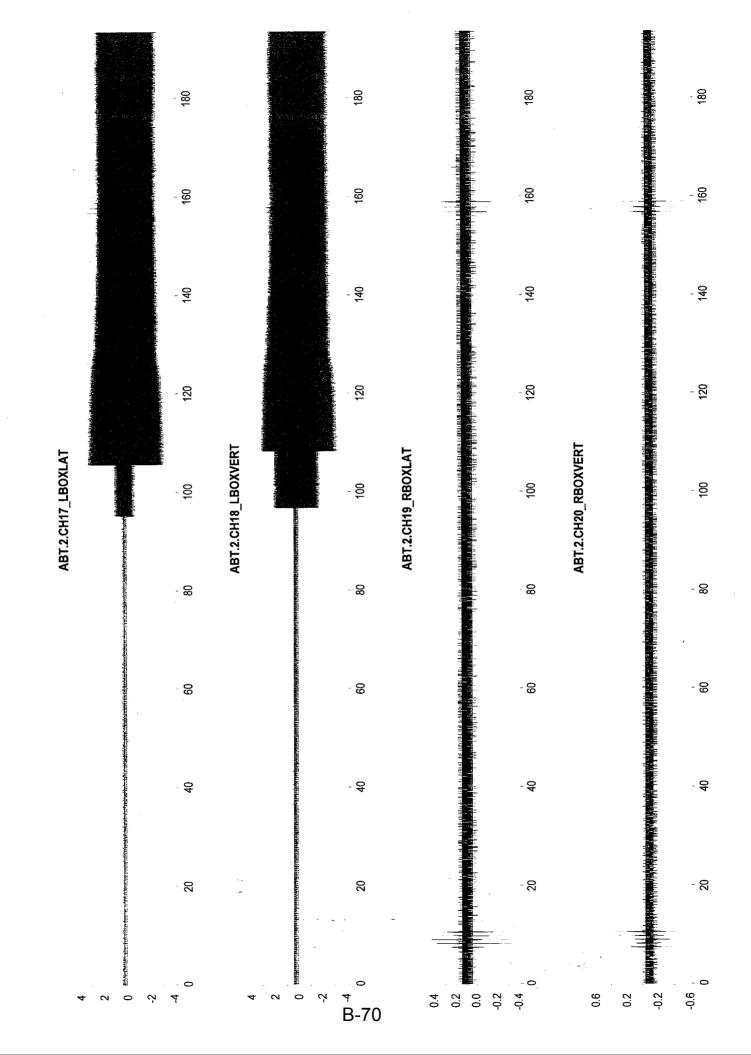
- 00

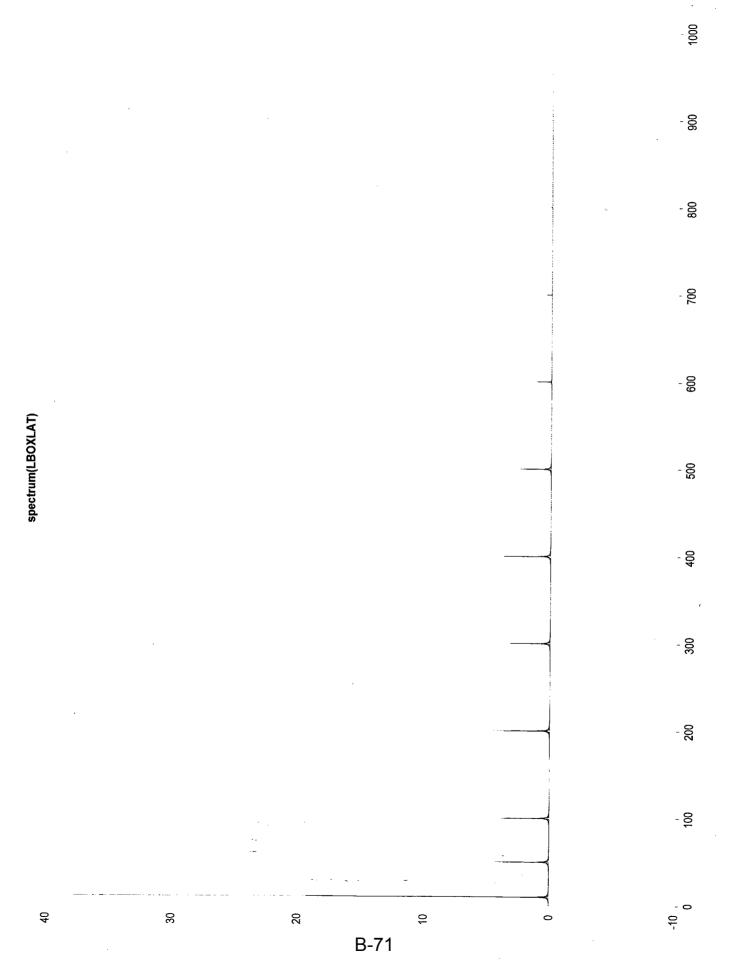
700

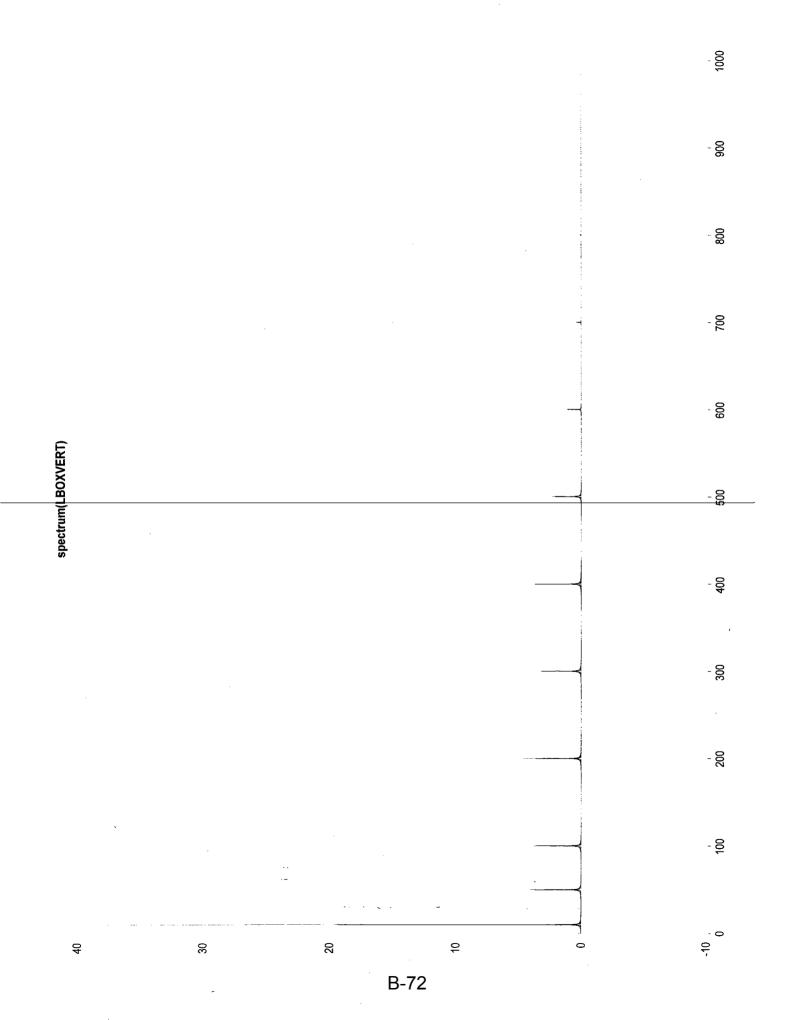
300

- 200

- 6


. O


400 600


9

œ

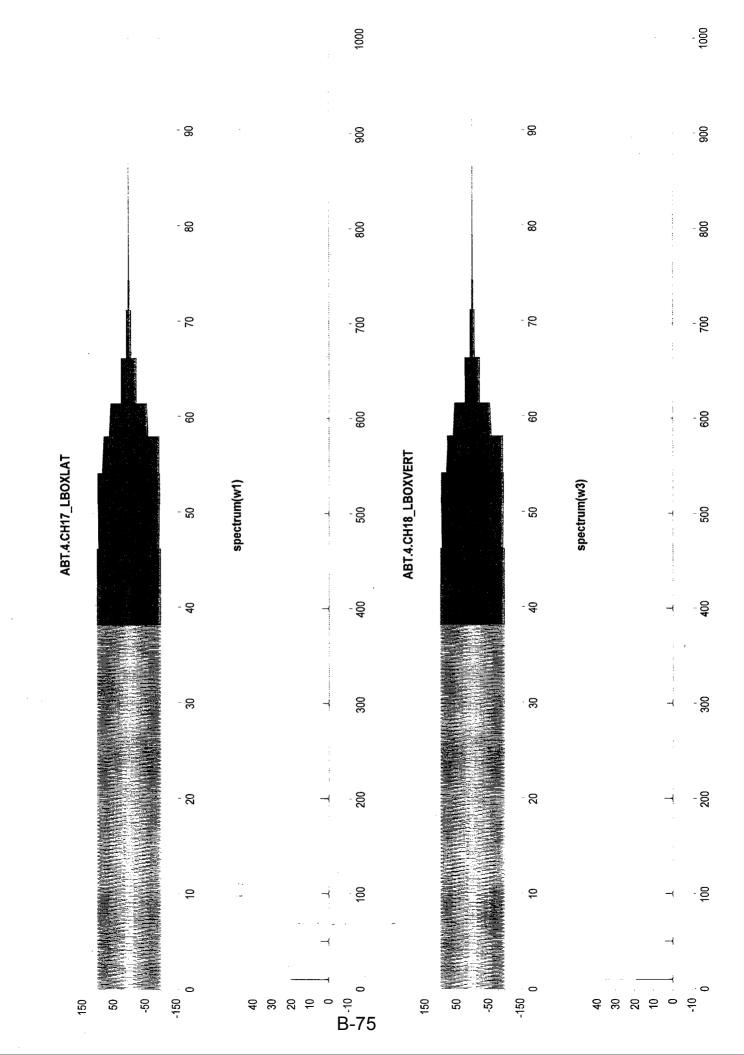
B-69

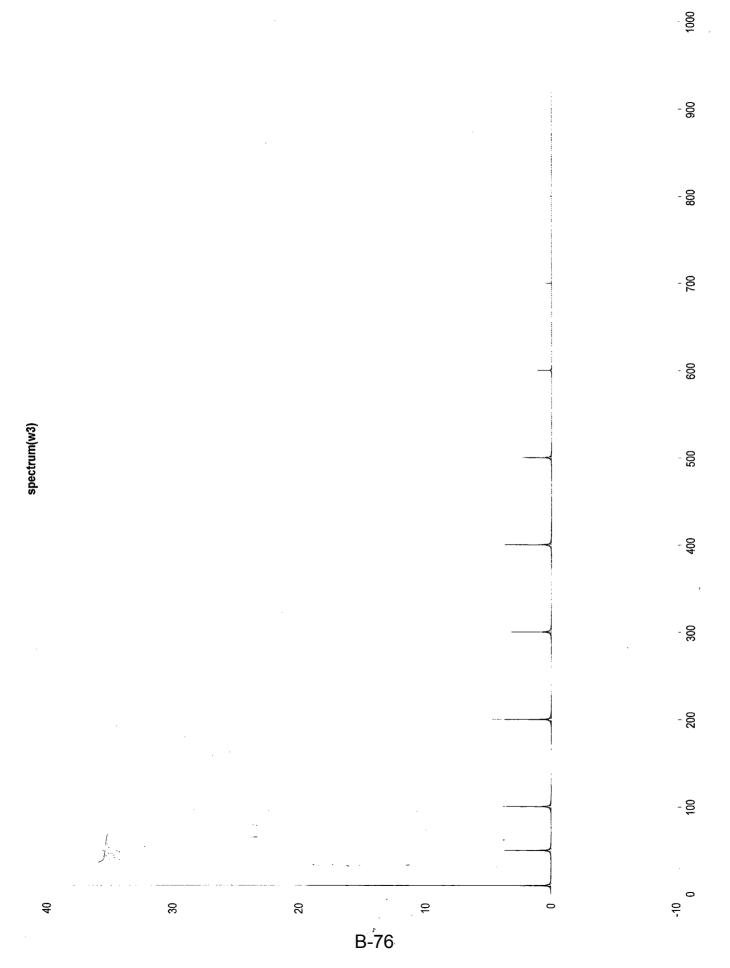
W1: 200 g Accelerometer with 100HZ Excitation

237.52

237.50

237.32


237.30


. چ

-50

9 9-

intell							450
accel Mounted on Oxle Trequescy COHz & 300Hz	hydr						- 400
1, 2 L	3						320
filter)		 				 	300
onse(without							- 250
W2: Accelerometer Response(without filter)							- 500
W2: Accel							- 150
							-100
							- 20
		 					- 0
·		 -					- 20
			10 miles 10	. .	-		

Appendix C. Data Descriptions

Data Acquisition FILE FORMAT-Acela Brake Test-May 9, 2005

During each data acquisition run, 3 files are generated.

1) Principal Data File, xxxxxxxx.abt

Binary Integer File, containing:

a) Header record, 2 integers (4 bytes, 2 bytes/integer), followed by

b) Sequential records of integer data, 32 integers/record (2 bytes/integer, 64 bytes/record)

Record 2: 32 integers (64 bytes); channels 1 - 32, at time t=0 seconds

Record 3: 32 integers (64 bytes); channels 1 - 32, at time t=1/1200th seconds Record 4: 32 integers (64 bytes); channels 1 - 32, at time t=2/1200th seconds

.. etc.

Nominal Sampling Rate = 1200 samples/second Nominal Time between Samples = 0.00083 seconds

PRINCIPAL DATA FILE HEADER RECORD - 4 bytes total						
Byte Nos	Туре	Parameter	Units	Nominal Value	No of Bytes	
1 - 2	1 integer	no of columns (channels) per data record		32	2	
3 - 4	1 integer	sample rate	samples/s	1200	2	
				Total	4	

_	PRINCIPAL DATA FILE RECORD - 32 integers (64 bytes)				
Chan	Parameter	File Scale Factor [actuals in .Cal file]	Units	File Offset [actuals in .Cal file]	
1	Strain gage, center rotor spoke	1	uE	0	
2	Strain gage, center rotor spoke	1	uE	0	
3	Strain gage, center rotor spoke	1	uE	0	
4	Strain gage, center rotor spoke	1	uE	0	
5	Strain gage, outer rotor spoke	1	uE	0	
6	Strain gage, outer rotor spoke	1	uE	0	
7	Strain gage, outer rotor spoke	1	uE	0	
8	Strain gage, outer rotor spoke	1	uE	0	
9	Thermocouple, center rotor spoke	10	F	0	

10	Temperature, braking surface, infra-red, center rotor	10	F	0
11	Temperature, braking surface, infra-red, center rotor	10	F	0
12	Temperature, braking surface, infra-red, outer rotor	10	F	0
13	Temperature, braking surface, infra-red, outer rotor	10	F	0
14	Speed sine wave from resolver	1000		0
15	Speed from resolver	100	g	0
16	Lateral Acceleration, axle mounted near rotor	100	g	0
17	Lateral Acceleration, Axle Box left	100	g	0
18	Vertical Acceleration, Axle Box left	100	g	0
19	Lateral Acceleration, Axle Box right	100	g	0
20	Vertical Acceleration, Axle Box right	100	g	0
21	Lateral Acceleration, center caliper near pad	100	g	0
22	Vertical Acceleration, center caliper near pad	100	g	0
23	Longitudinal Acceleration, center caliper, near pad	100	g	0
24	Lateral Acceleration, center caliper, near actuator	100	g	0
25	Vertical Acceleration, center caliper, near actuator	100	g	0
26	Longitudinal Acceleration, center caliper, near actuator	100	g	0
27	Lateral Acceleration, outer caliper, near pad	100	g	0
28	Vertical Acceleration, outer caliper, near pad	100	g	0
29	Longitudinal Acceleration, outer caliper, near pad	100	g	0
30	Brake Pipe Pressure	100	psi	0
31	Brake Cylinder Pressure, center caliper	100	psi	0
32	Brake Park Pressure, center caliper	100	psi	0

2) GPS Data File, xxxxxxxxx.gps

Ascii File, containing:

a) Sequential records of data, Ascii format, 5 columns, space delimited, 41

characters/record (1 byte/character, 41 bytes/record)

Record 1: 41 characters (41 bytes); gps data at time t=0 second Record 2: 41 characters (41 bytes); gps data at time t=1 second

... etc.

Sampling Rate = 1 sample/second

	GPS Data File Format - Space Delimited				
Column	Parameter	Units	Nominal No. of Characters		
1	GPS time, seconds past midnight Greenwich	sec	6		
2	Latitude	deg	12		
3	Longitude	deg	13		
4	Speed	mph	6		
5	No. of Satellites		4		

3) Calibration File, xxxxxxxx.cal

Ascii File, containing:

a) 1 record for each data channel (total of 32), Ascii format, 5 columns, space delimited

Record 1: calibration data

Record 2: 41 characters (41 bytes); gps data at time t=1 second

Column	Parameter	Units	Nominal No. of Characters
1	Sensor gain - required only for record	e.g. V/g	8
2	Sensor offset - required only for record	deg	8
3	File Scale Factor - necessary to convert file data to engineering units	deg	8
4	File Offset - necessary to convert file data to engineering units	mph	8
5	Channel description and units		~ 24

Note: Each integer stored in the .abt file must be divided by the respective file scale factor to obtain correct engineering units.

Data Acquisition FILE FORMATS-Acela Brake Test-May 24, 2005

During each data acquisition run, May 26 - 27, 2005, 4 files will be generated.

1) Principal Data File, 3000 Sampling Rate: xxxxxxxx.ab2

Binary Integer File, Intel format, integers in the range –32768 to +32768, containing:

Header record, 2 integers (4 bytes, 2 bytes/integer), followed by

Sequential records of integer data, 32 integers/record (2 bytes/integer, 64 bytes/record) b)

32 integers (64 bytes); channels 1 - 32, at time t=0 seconds Record 2: Record 3:

32 integers (64 bytes); channels 1 - 32, at time t=1/3000th seconds 32 integers (64 bytes); channels 1 - 32, at time t=2/3000th seconds Record 4:

... etc.

Nominal Sampling Rate = 3000 samples/second Nominal Time between Samples = 0.00033 seconds

Principal Data File ".ab2" HEADER RECORD - 4 bytes total						
Byte Nos	Туре	Parameter	Units	Nominal Value	No of Bytes	
1 - 2	1 integer	no of columns (channels) per data record		32	2	
3 - 4	1 integer	sample rate	samples/s	3000	2	
				Total	4	

	Principal Data File ".ab2" RECORD - 32 integers (64 bytes)					
Chan	Parameter	File Scale Factor [actuals in .Cal file]	Units	File Offset [actuals in .Cal file]		
1	Strain gage, center disc spoke 6, F1	1	uE	0		
2	Strain gage, center disc spoke 6, F2	1	uE	0		
3	Strain gage, center disc spoke 6, R1	1	uE	0		
4	Strain gage, center disc spoke 6, R2	1	uЕ	0		
5	Strain gage, center disc spoke 3, R1	1	uE	0		
6	Strain gage, center disc spoke 3, R2	1	uE	0		
7	Strain gage, axle near center disc adjacent spoke 6	1	uE	0		
8	Strain gage, axle near center disc adjacent spoke 3	1	uE	0		
9	Strain gage, axle near ¼ location, adjacent spoke 6	1	uE	0		
10	Strain gage, axle near ¼ location, adjacent spoke 3	1	uE	0		
11	Thermocouple, back of friction ring	10	deg F	0		
12	Temperature, braking surface, infra-red, center rotor	10	deg F	0		
13	Temperature, braking surface, infra-red, center rotor	10	deg F	0		

14	Sine wave from resolver	1000		0
15	Calculated speed from resolver	100	mph	0
16	Lateral Acceleration, axle mounted near rotor	100	g	0
17	Lateral Acceleration, Axle Box left	100	g	0
18	Vertical Acceleration, Axle Box left	100	g	0
19	Lateral Acceleration, Axle Box right	100	g	0
20	Vertical Acceleration, Axle Box right	100	g	0
21	Lateral Acceleration, center caliper near pad	100	g	0
22	Vertical Acceleration, center caliper near pad	100	g	0
23	Longitudinal Acceleration, center caliper, near pad	100	g	0
24	Lateral Acceleration, center caliper, near actuator	100	g	0
25	Vertical Acceleration, center caliper, near actuator	100	g	0
26	Longitudinal Accel, center caliper, near actuator	100	g	0
27	Lateral Acceleration, axle mounted (piezo-electric)	100	g	0
28	File Synchronization signal	1000	g	0
29	Lateral Acceleration, axle (strain-based)	100	g	0
30	Brake Pipe Pressure	100	psi	0
31	Brake Cylinder Pressure, center caliper	100	psi	0
32	Brake Park Pressure, center caliper	100	psi	0

Note: Each data integer stored in the .ab2 file must be divided by the respective file scale factor to obtain correct engineering units. i.e. Physical data value (engineering units) = integer / file scale factor - offset

2) GPS Data File: xxxxxxxxx.gps

Ascii File, containing:

 Sequential records of data, Ascii format, 6 columns, space delimited, and trailing text giving location w.r.t. milepost, nominally 72 characters/record (1 byte/character, ~72 bytes/record)

Record 1: ~72 characters (41 bytes); gps data at time t=0 second Record 2: ~72 characters (41 bytes); gps data at time t=1 second ... etc.

Sampling Rate = 1 sample/second

	GPS Data File Format - Space Delimited					
Column	Parameter	Units	Nominal No. of Characters			
1	GPS time, seconds past midnight Greenwich	sec	6			
2	Latitude	deg	12			
3	Longitude	deg	13			
4	Speed	mph	6			
5	No. of Satellites		4			
6	Corresponding time in the .AB2 data file	sec	6			
7	Text giving location with respect to Milepost		25			

3) Calibration File: xxxxxxxxx.cal

Ascii File, containing:

a) 1 record for each data channel (total of 32), Ascii format, 5 columns, space delimited

Column	Parameter	Units	Nominal No. of Characters
1	Sensor offset - required only for documentation	V	11
2	Sensor gain - required only for documentation	e.g. mV/g	11
3	File Scale Factor - necessary to convert file data to engineering units		8
4	File Offset - necessary to convert file data to engineering units		8
5	Channel description and units		~ 24

Note: Each data integer stored in the .ab2 file must be divided by the respective file scale factor to obtain correct engineering units. i.e. Physical data value (engineering units) = integer / file scale factor - offset

4) Data File, 10,000 Sampling Rate: xxxxxxxx.001

Binary Integer File, Motorola format, integers in the range –32768 to +32768, containing:

a) Date record, 4 integers (8 bytes, 2 bytes/integer), followed by

b) Sequential records of integer data, 16 integers/record (2 bytes/integer, 32 bytes/record)

Record 2: 16 integers (32 bytes); channels 1 - 16, at time t=0 seconds

Record 3: 16 integers (32 bytes); channels 1 - 16, at time t=1/10000th seconds Record 4: 16 integers (32 bytes); channels 1 - 16, at time t=2/10000th seconds

... etc.

Nominal Sampling Rate = 10000 samples/second Nominal Time between Samples = 0.00010 seconds

Data File DATE RECORD - 8 bytes total						
Byte Nos	Туре	Parameter	Units	Nominal Value	No of Bytes	
1 - 2	1 integer	Date0			2	
3 - 4	1 integer	Date1			2	
5 - 6	1 integer	Date2			2	
7 - 8	1 integer	Date3			2	
			•	Total	8	

	DATA FILE RECORD - 16 integers (32 bytes)						
Chan	Parameter	File Scale Factor	Units	File Offset			
1	Vertical Acceleration, Axle Box Left	2.04800	g	0			
2	Lateral Acceleration, Axle Box Left	2.04800	g	0			
3	Vertical Acceleration, Axle Box Right	2.04800	g	0			
4	Lateral Acceleration, Axle Box Right	2.04800	g	0			
5	Lateral Acceleration, Axle (piezo-electric)	4.034560	g	0			
6	Lateral Acceleration, Axle (strain-based)	2.06848	g	0			
7	Strain gage, center rotor spoke 6, R1	0.1732267	uE	0			
8	Strain gage, center rotor spoke 6, R2	0.1732267	uE	0			
9	Strain gage, center rotor spoke 3, R1	0.1732267	uE	0			
10	Strain gage, center rotor spoke 3, R2	0.1732267	uE	0			
11	Strain gage, axle near center disc adjacent spoke 6	0.1732267	uE	0			
12	Strain gage, axle near center disc adjacent spoke 3	0.1732267	uE	0			
13	Strain gage, axle near ¼ location, adjacent spoke 6	0.1732267	uE	0			
14	Strain gage, axle near ¼ location, adjacent spoke 3	0.1732267	uЕ	0			
15	Sine wave from resolver	204.800	Volts	0			
16	Synchronization pulses	204.800	Volts	0			

Note: Each data integer stored in the .001 file must be divided by the respective file scale factor to obtain correct engineering units. i.e. Physical data value (engineering units) = integer / file scale factor - offset

CMSW32 Data Storage

CMSW32 stores test data in two files:

- *.CMW Header File
- *.001 Data File

Format of Header File (*.cmw)

Torriat or ricador riic (.ciriw)	T	1	T =
Variable	Variable Type	No. of	Expected/
		Bytes	Default Values
Separator?	1 byte	1	
File Identifier	String [10]	10	'CMW32V2.1'
Separator?	1 byte	1	
Test Description	String [50]	50	
Separator?	1 byte	1	
Test Engineer	String [50]	50	
Separator?	1 byte	1	
Job Number	String [50]	50	
Separator?	1 byte	1	
Test Title	String [50]	50	'Acela Evaluation'
Number of Channels	Integer (4 byte)	4	16
Save Mode (for internal use)	Byte	1	
Total Bytes in Section 1		220	
Channel structure (x300 channels)			
Channel On	Boolean	1	
Separator?	1 byte	1	
Channel Description	String[30]	30	
Separator?	1 byte	1	
Channel Units	String[30]	30	
Volt Offset	Single (4 byte)	4	
Conversion Factor	Single (4 byte)	4	
Calibration Factor	Single (4 byte)	4	
High Alarm On	Boolean	1	
Low Alarm On	Boolean	1	
High Alarm Level	Single (4 byte)	4	
Low Alarm Level	Single (4 byte)	4	
High Alarm Dead band	Single (4 byte)	4	
Low Alarm Dead band	Single (4 byte)	4	
H Level Volts	Double (8 byte)	8	
L Level Volts	Double (8 byte)	8	
H Band Volts	Double (8 byte)	8	
L Band Volts	Double (8 byte)	8	
Gain	Byte	1	
Channel Colour	Integer (4 byte)	4	
Total Bytes for Each Channel	(x 300 channels)	130	
Sample Rate	Double (8 byte)	8	0.0001
Voltage _Factor	Single (4 byte)	4	0.004883
Integer_Offset	Small Integer (2 byte)	2	2048
	2a		1 - 2 . 3

The data for each channel is calculated as:

$$\label{eq:Volts} \begin{aligned} & \text{Volts} = \left[\left(\textit{Bits} - \textit{Integer} _\textit{Offset} \right) \times \textit{Voltage} _\textit{Factor} - \textit{Volt} _\textit{Offset}_{\textit{channel}} \right] \\ & \text{Reading}_{\textit{mechanical units}} = \textit{Volts} * \textit{Conversion} _\textit{Factor}_{\textit{channel}} - \textit{CalibrationFactor}_{\textit{channel}} \end{aligned}$$

Data Acquisition FILE FORMATS-Acela Brake Test-June 15, 2005

During each data acquisition run, June 16 - 18, 2005, 3 files will be generated.

1) Principal Data File, 3000 Sampling Rate: xxxxxxxx.ab3

Binary Integer File, Intel format, integers in the range –32768 to +32768, containing:

- a) Header record, 2 integers (4 bytes, 2 bytes/integer), followed by
- b) Sequential records of integer data, 65 integers/record (2 bytes/integer, 130 bytes/record)

Record 2: 65 integers (130 bytes); channels 1 - 65 and speed, at time t=0 seconds

Record 3: 65 integers (130 bytes); channels 1 - 65 and speed, at time t=1/3000th seconds Record 4: 65 integers (130 bytes); channels 1 - 65 and speed, at time t=2/3000th seconds

... etc.

Nominal Sampling Rate = 3000 samples/second Nominal Time between Samples = 0.00033 seconds

	Principal Data File ".ab3" HEADER RECORD - 4 bytes total						
Byte Nos	Туре	Parameter	Units	Nominal Value	No of Bytes		
1 - 2	1 integer	no of columns (channels) per data record		65	2		
3 - 4	1 integer	sample rate	samples/s	3000	2		
				Total	4		

Principal Data File ".ab3" RECORD - 65 integers (130 bytes)							
Chan	Parameter	Axle	File Scale Factor [actuals in .Cal file]	Units	File Offset [actuals in .Cal file]		
1	Lateral Acceleration, axle mounted	1	100	g	0		
2	Lateral Acceleration, Truck Frame Left	1	100	g	0		
3	Vertical Acceleration, Truck Frame Left	1	100	g	0		
4	Longitudinal Acceleration, Truck Frame Left	1	100	g	0		
5	Lateral Acceleration, Brake Mounting Tube	1	100	g	0		
6	Vertical Acceleration, Brake Mounting Tube	1	100	g	0		
7	Sine wave from resolver	1	1000		0		
8	Sine wave from resolver	2	1000		0		
9	Longitudinal Acceleration, Brake Mounting Tube	1	100	g	0		
10	Lateral Acceleration, center caliper, near actuator	1	100	g	0		
11	Vertical Acceleration, center caliper, near actuator	1	100	g	0		
12	Longitudinal Accel, center caliper, near actuator	1	100	g	0		
13	Brake Cylinder Pressure, center caliper	1	100	psi	0		

14	Thermocouple, center rotor	1	10	deg F	0
15	File Synchronization signal		1000		0
16	Lateral Acceleration, axle mounted	2	100	g	0
17	Lateral Acceleration, Truck Frame Left	2	100	g	0
18	Vertical Acceleration, Truck Frame Left	2	100	g	0
19	Longitudinal Acceleration, Truck Frame Left	2	100	g	0
20	Lateral Acceleration, Brake Mounting Tube	2	100	g	0
21	Vertical Acceleration, Brake Mounting Tube	2	100	g	0
22	Longitudinal Acceleration, Brake Mounting Tube	2	100	g	0
23	Lateral Acceleration, center caliper, near actuator	2	100	g	0
24	Vertical Acceleration, center caliper, near actuator	2	100	g	0
25	Longitudinal Accel, center caliper, near actuator	2	100	g	0
26	Thermocouple, center rotor	2	10	deg F	0
27	Brake Cylinder Pressure, center caliper	2	100	psi	0
28	Strain gage, center disc spoke 6, F1	1	1	uE	0
29	Strain gage, center disc spoke 6, F2	1	1	uE	0
30	Strain gage, center disc spoke 6, R1	1	1	uE	0
31	Strain gage, center disc spoke 6, R2	1	1	uE	0
32	Bad channel, unused		1		0
33	Strain gage, center disc spoke 3, R1	1	1	uE	0
34	Strain gage, center disc spoke 3, R2	1	1	uE	0
35	Strain gage, axle near center disc adjacent spoke 6	1	1	uE	0
36	Strain gage, axle near center disc adjacent spoke 3	1	1	uE	0
37	Strain gage, axle near ¼ location, adjacent spoke 6	1	1	uE	0
38	Strain gage, axle near ¼ location, adjacent spoke 3	1	1	uE	0
39	Strain gage, center caliper left	1	1	uE	0
40	Strain gage, center caliper right	1	1	uE	0
41	Strain gage, center disc spoke 6, R1 (SG1)	2	1	uЕ	0

42	Strain gage, center disc spoke 6, R2 (SG2)	2	1	uE	0
43	Strain gage, center disc spoke 3, R1 (SG3)	2	1	uE	0
44	Strain gage, center disc spoke 3, R2 (SG3a)	2	1	uE	0
45	Strain gage, center disc spoke 6 face, upper gage (SG4)	2	1	uE	0
46	Strain gage, center disc spoke 6 face, lower gage (SG5)	2	1	uE	0
47	Strain gage, center disc spoke 4, R2 position (SG6)	2	1	uE	0
48	Strain gage, axle near center disc adjacent spoke 6	2	1	uE	0
49	Strain gage, axle near center disc adjacent spoke 3	2	1	uE	0
50	Strain gage, axle near ¼ location, adjacent spoke 6	2	1	uE	0
51	Strain gage, axle near ¼ location, adjacent spoke 3	2	1	uE	0
52	Strain gage, axle near center disc adjacent spoke 6 + 90°	2	1	uE	0
53	Strain gage, axle near center disc adjacent spoke 6 - 90°	2	1	uE	0
54	Lateral Acceleration, Axle Box left	1	100	g	0
55	Vertical Acceleration, Axle Box left	1	100	g	0
56	Lateral Acceleration, Axle Box right	1	100	g	0
57	Vertical Acceleration, Axle Box right	1	100	g	0
58	Lateral Acceleration, Axle Box left	2	100	g	0
59	Vertical Acceleration, Axle Box left	2	100	g	0
60	Lateral Acceleration, Axle Box right	2	100	g	0
61	Vertical Acceleration, Axle Box right	2	100	g	0
62	Lateral Acceleration 2, axle mounted	1	100	g	0
63	Lateral Acceleration 3, axle mounted	1	100	g	0
64	Longitudinal Acceleration, axle mounted	1	100	g	0
65	Calculated Speed for SINE 1		100	mph	0

Note: Each data integer stored in the .ab3 file must be divided by the respective file scale factor to obtain correct engineering units. i.e. Physical data value (engineering units) = integer / file scale factor - offset

2) GPS Data File: xxxxxxxxx.gps

Ascii File, containing:

a) Sequential records of data, Ascii format, 6 columns, space delimited, and trailing text giving location w.r.t. milepost, nominally 72 characters/record (1 byte/character,

~72 bytes/record)

Record 1: ~72 characters (41 bytes); gps data at time t=0 second Record 2: ~72 characters (41 bytes); gps data at time t=1 second

... etc.

Sampling Rate = 1 sample/second

GPS Data File Format - Space Delimited						
Column	Parameter	Units	Nominal No. of Characters			
1	GPS time, seconds past midnight Greenwich	sec	6			
2	Latitude	deg	12			
3	Longitude	deg	13			
4	Speed	mph	6			
5	No. of Satellites		4			
6	Corresponding time in the .AB2 data file	sec	6			
7	Text giving location with respect to Milepost		25			

3) Calibration File: xxxxxxxxx.cal

Ascii File, containing:

a) 1 record for each data channel (total of 65), Ascii format, 5 columns, space delimited

Column	Parameter	Units	Nominal No. of Characters
1	Sensor offset - required only for documentation	V	11
2	Sensor gain - required only for documentation	e.g. mV/g	11
3	File Scale Factor - necessary to convert file data to engineering units		8
4	File Offset - necessary to convert file data to engineering units		8
5	Channel description and units		~ 24

Note: Each data integer stored in the .ab3 file must be divided by the respective file scale factor to obtain correct engineering units. i.e. Physical data value (engineering units) = integer / file scale factor - offset

Appendix D. Test Documents and Logs

Acela Brake Disc Test - Test Log

Date 14-May-05 Test Run Shakedown Run

Train Configuration Car 3413 on Trail End of Consist (PC 2038 Trailing)

Sample Rate 1200 samples/sec Anti-Alias Filter Setting Set to 300 Hz

Filename	Start Location	End Location	Comments				
051405_01.ABT	Ivy City	Ivy City	Prior to leaving, set spoke temperature by offset, zeroed strain gages.				
051405_02.ABT	Ivy City	Ivy City					
051405_03.ABT	Ivy City	Washington Union Sta.					
051405_04.ABT	Washington Union Sta.	Washington Union Sta.					
051405_05.ABT	Washington Union Sta.	Baltimore	Vert/Lat Lbox failed; Temp OR R seems low 40deg, Temp CR L seems high 40 deg				
051405_06.ABT	Baltimore	MP AP77	Applied Emergency Brake at end of file				
051405_07.ABT	MP AP77	MP AP77	After Emergency Brake, checked temps with TC, hand pyrometer				
051405_08.ABT	MP AP77	Wilmington, DE	Brake application at t=540; saturation of lateral accel on axle at t=1002; longitudinal looked off				
Scale factors changed from 25mv/G to 50 mv/G on tri-axials on calipers							
051405_09.ABT	Wilmington, DE	Baltimore, MD	apply snow brake MP 27-MP 60, every disc, every pad @ 10psi; end of snow brake at Susq Br				

CHANGED ACCELS IN BALTIMORE; BOTH ACCELS ON ENDS OF AXLES BAD

- Knorr Supplied 200G (L) and 500g (V) for Left Side Axle Box

Baltimore, MD

- ENSCO put on 100 G tri-axial on right side axle box

051405_10.ABT

051405_10.ABT Baltimore, MD Washington Union Sta. Saw Noise on Left Axle End Accels (Lat & Vert)

Baltimore, MD

when slowing down, not while running

Sitting

Date 16-May-05

Test Run Washington to Boston, 7-inch Cant Deficiency Run Train Configuration Car 3413 on Trail End of Consist (PC 2038 Trailing)

Sample Rate 2000 samples/sec Anti-Alias Filter Settin Set to 500 Hz

Filename	Start Location	End Location	Channels	Header	Comments
systest16.ABT	NeC-MSC	NeC-MSC	sensors_VER8.xls	sample2000r1.hed	System Test in Shop - 2 Volts peak-to-peak, Fixed
					Frequency of 57 Hz
systest17.ABT	NeC-MSC	NeC-MSC	sensors_VER8.xls	sample2000r1.hed	System Test in Shop - Frequency Sweep
calfile1.ABT	NeC-MSC	NeC-MSC	sensors_VER8.xls	sample2000r1.hed	Zero All Accels/Gages
calfile2.ABT	NeC-MSC	NeC-MSC	sensors_VER8.xls	sample2000r1.hed	Shunted all Strain Gages
051605_01.ABT	Ivy City	Ivy City	sensors_VER8.xls	sample2000r1.hed	Yard Move
051605_02.ABT	Ivy City	Washington Union Sta.	sensors_VER8.xls		
051605_03.ABT	Washington Union Sta.	Baltimore MD (~MP AP 95)			Pressures Dropped Out ~MP AP119
051605_04.ABT	Baltimore MD (~MP AP 95)	MP AP 85	sensors_VER8.xls	sample2000r1.hed	Full Service Brake Test at End so Temperature Meas.
					Could Be Made
051605_05.ABT	MP AP 85	~ MP AP 77			System Lock-Up Ended Data Collection
051605_06.ABT	~ MP AP 77	MP AP 63			Stopped Train to Close Open Door
051605_07.ABT	MP AP 63	Wilmington DE (MP AP 26)	sensors_VER8.xls	sample2000r1.hed	Noise on Left Axle Box Accels (Knorr);
					Same Signature on Both Lat and Vert
051605_08.ABT	Wilmington DE (MP AP 26)	Philadelphia, PA (MP AP 0)	sensors_VER8.xls	sample2000r1.hed	~MP AP 3 - Large Hit, Also Negative Spikes on
					Axle Lat Accel
051605_09.ABT	Philadelphia, PA (MP AP 0)	MP AN 60	sensors_VER8.xls	sample2000r1.hed	Full Service Brake Test at End, No Temperature Meas
					Could Be Made
051605_10.ABT	MP AN 60	Newark, NJ (MP AN 8)	sensors_VER8.xls	sample2000r1.hed	At End of Run, Inserted Amtrak Lat and Vert Accels
					on Left End of Axle Box into Data Stream,
					Removed Knorr Accels from Data Collection;
054005 44 ADT	Name of ALL (MD AND)	Name Variation (NAD AND)	\(\(\tau \)		Lateral and Vertical Accels - +/- 250 G
051605_11.ABT	Newark, NJ (MP AN 8)	New York City (MP AN 0)	-	·	Now Recording Amtrak Accels
051605_12.ABT	New York City (MP AN 0)	~ MP E 3	_	•	Stopped Train to Fix Loose Tape on Axle
051605_13.ABT	~ MP E3	MP E 19	sensors_VER9.xls		Ohannad Daviddia Cianatana Franz Tima
051605_14.ABT	MP E 19	New Haven, CT (MP AB 73)	sensors_ver9.xis	sample2000r1.ned	Observed Periodic Signature From Time ~
054605 45 ADT	Novi Hoven, CT (MD AD 72)	MD AD 446	concern VEDO via	completion of had	2100 - 2790; Observed Large Hit ~ MP MN 56
051605_15.ABT	New Haven, CT (MP AB 73)	~ MP AB 116	Sensors_ver9.xis	sample2000r1.ned	Full Service Brake Test at End so Temperature Meas. Could Be Made
051605 16 ADT	~ MP AB 116	New London CT (MD AD 122)	concore VEDO via	comple2000r1 had	Could be ividue
051605_16.ABT 051605_17.ABT	New London CT (MP AB 123)	New London CT (MP AB 123)			Full Service Brake Test at End so Temperature Meas.
1 DA. 11_0001 CO	NEW LUNGUI OT (INF AB 123)	WIF AD 103	3C113U13_VER3.XIS	SampleZUUUI 1.11eu	Could Be Made
051605 18.ABT	~ MP AB 183	~ MP AB 185	sensors_VER9.xls	sample2000r1 hed	Could be Made
00 1000_10.AD1	ואו אר וואו	IVII AD 100	30113013_V L1\3.XIS	Jampiezoooi i.lieu	

Date 16-May-05

Test Run Washington to Boston, 7-inch Cant Deficiency Run
Train Configuration Car 3413 on Trail End of Consist (PC 2038 Trailing)
Sample Rate 2000 samples/sec

Anti-Alias Filter Settin Set to 500 Hz

Filename	Start Location	End Location	Channels	Header	Comments
051605_19.ABT	~ MP AB 185	~ MP AB 200	sensors_VER9.xls	sample2000r1.hed	System Lock-Up During Full Service Brake Test to Take Temperature Meas.
051605_20.ABT	~ MP AB 202	~ MP AB 202	sensors_VER9.xls	sample2000r1.hed	Collected Data During Temperature Measurement
051605_21.ABT	~ MP AB 202	~ MP AB 212	sensors_VER9.xls	sample2000r1.hed	
051605_22.ABT	~ MP AB 212	~ MP AB 215	sensors_VER9.xls	sample2000r1.hed	
051605_23.ABT	~ MP AB 215	~ MP AB 219	sensors_VER9.xls	sample2000r1.hed	Full Service Brake Test at End so Temperature Meas.
					Could Be Made
051605_24.ABT	~ MP AB 219	Boston MA (MP AB 228)	sensors_VER9.xls	sample2000r1.hed	Saw Negative Spikes on Axle Mounted Accel
					~MP AB 225

Date 17-May-05

Test Run Boston to Washington, 7-inch Cant Deficiency Run Train Configuration Car 3413 on Lead End of Consist (PC 2038 Leading)

Sample Rate 2000 samples/sec (Changed in Baltimore to 4kHz, then to 3kHz)

Anti-Alias Filter Setting Set to 500 Hz (Changed to 1kHz in Baltimore)

Filename	Start Location	End Location	Channels	Header	Comments
calfile051705_01.ABT	Maintenance Facility	Maintenance Facility	sensors_VER9.xls	sample2000r2.hed	Zero All Accels/Gages
calfile051705_02.ABT	Maintenance Facility	Maintenance Facility	sensors_VER9.xls	sample2000r2.hed	Shunted all Strain Gages
calfile051705_03.ABT	Maintenance Facility	Maintenance Facility	sensors_VER9.xls	sample2000r2.hed	Continuous Frequencies 100Hz, Ch 16, 19
calfile051705_04.ABT	Maintenance Facility	Maintenance Facility	sensors_VER9.xls	sample2000r2.hed	Sweep of Frequencies 100-1000 Hz, in Steps of 100 2 Volt P-P, Ch 16, 19
051705_01.ABT	Maintenance Facility	Boston MA (MP AB 228)	sensors VFR9 vis	sample2000r2.hed	
051705_01.ABT	Boston MA (MP AB 228)	Route 128 Station	-	· ·	t=450 saturation on lat axle accel; no GPS
051705_03.ABT	Route 128 Station	?	-	sample2000r2.hed	
051705_04.ABT	?	?			SYSTEM RESTART, NO DATA
051705_05.ABT	?	?	_	•	SYSTEM RESTART, NO DATA
051705 06.ABT	?	Providence RI	_	•	t=522, noise spikes on strain gages, no GPS
051705_07.ABT	Providence RI	Westerley RI	-	· ·	t=35, 340-360 spikes on Ctr Spoke F1 strain
_		,	_	•	ENSCO system issue; no GPS
051705_08.ABT	Westerley RI	MP AB 127	sensors_VER9.xls	sample2000r2.hed	Stopped Train to Look at Lat Accel Axle; no GPS
051705_09.ABT	MP AB 127	MP AB 127	sensors_VER9.xls	sample2000r2.hed	Collecting Data During Troubleshooting, recover GPS
051705_10.ABT	MP AB 127	New London CT (MP AB 122)	sensors_VER9.xls	sample2000r2.hed	
051705_11.ABT	New London CT (MP AB 122)	MP AB 82	sensors_VER9.xls	sample2000r2.hed	
051705_12.ABT	MP AB 82	New Haven, CT (MP MN 72)	sensors_VER9.xls	sample2000r2.hed	
051705_13.ABT	New Haven, CT (MP MN 72)	MP MN 65	sensors_VER9.xls	sample2000r2.hed	
051705_14.ABT	MP MN 65	MP MN 57		sample2000r2.hed	
051705_15.ABT	MP MN 57	MP MN 40	sensors_VER9.xls	sample2000r2.hed	
051705_16.ABT	MP MN 40	MP MN 19	sensors_VER9.xls	sample2000r2.hed	
051705_17.ABT	MP MN 19	New York City (MP AN 0)	sensors_VER9.xls	sample2000r2.hed	t=230,520 large strains on CTRSPOKE Rib 1
					when brakes applied
051705_18.ABT	New York City (MP AN 0)	Newark NJ	sensors_VER9.xls	sample2000r2.hed	

Date 17-May-05

Boston to Washington, 7-inch Cant Deficiency Run Car 3413 on Lead End of Consist (PC 2038 Leading) Test Run Train Configuration

2000 samples/sec (Changed in Baltimore to 4kHz, then to 3kHz) Set to 500 Hz (Changed to 1kHz in Baltimore) Sample Rate

Anti-Alias Filter Setting

Filename 051705_19.ABT	Start Location Newark NJ	End Location Philadelphia, PA	Channels sensors_VER9.xls	Header sample2000r2.hed	Comments t=120, strains in CTRSPOKE ribs huge when braking not in face, audible braking noise; t=360, same thing not as high no audible brake noise; t=705 strain gage jump - SCU issue Large Hits at Midway; Full Service Brake Application look at strains after Midway (no high strains); t=~1585 brake applied, high CTRSPOKE Ribs strains t~1728,1785 and after - several examples of lat accel saturation.
051705_20.ABT 051705_21.ABT	Philadelphia, PA Wilmington DE (MP AP 26)	Wilmington DE (MP AP 26) Baltimore MD (MP AP 95)	_	•	t=1250 big strains CTRSPOKE ribs during braking t=1220, 1476 big strains on CTRSPOKE ribs during braking; Saturation of lat axle accel at t=1310,1900,2210 t=2017, big strains during braking on CTRSPOKE, big strain spike follows; t~2200(MP 89) saturation of Lat Accel axle, left axle box lat, right axle box vert t=2410 big strains on CTRSPOKE ribs during braking starting to see same in OUTSPOKE as well
051705_22.ABT	Baltimore MD (MP AP 95)	Baltimore MD (MP AP 95)	sensors_VER9.xls		SWITCH SAMPLE RATE TO 4kHZ, Anti-Alias @ 1kH SYSTEM CRASH
051705_23.ABT	Baltimore MD (MP AP 95)	MP AP 110	sensors_VER9.xls	sample3000r2.hed	SWITCH SAMPLE RATE TO 3kHZ, Anti-Alias @ 1kH SYSTEM CRASH DUE TO COPYING FILES
051705_24.ABT	MP AP 110	Washington DC	sensors_VER9.xls	sample3000r2.hed	Sample Rate 3kHz, Anti-Alias @ 1kHz

26-May-05
Washington to Boston, 7-inch Cant Deficiency Run
Car 3413 on Lead End of Consist (PC 2038 Leading)
3000 samples/sec on ENSCO System, 10,000 Hz on Amtrak System
Set to 1000 Hz for ENSCO System Only; No Anti-Alias Filter Used on Amtrak System Date Test Run Train Configuration

Sample Rate Anti-Alias Filter Setting

3kHz (32 ch) System 10kHz (16 ch) System Filename Filename

(*.ABT, *.CAL, *.GPS)	(*.001)	Start Location	End Location	Track (if avail)	Channels	Header (3kHz)	Header (10kHz)	Comments
052605_0		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	zeroes the gages and the accelerometers
052605_shunt		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	System Test in Shop - Frequency Sweep
052605_sweep		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Chs. 1 & 17, 100 to 8K 5 secs 2V Pk-to-Pk sine wave
052605_freq		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	
052605_zero2		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	zeroing of center caliper actuator accelerometers
052605_sync		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	sync test of the 2 systems
052605_shuntaxlelat3		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	to shunt calib the lat 3 accel
052605_sync2		NeC-MSC	NeC-MSC		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	testing of the sync again
052605_sync3 052605_roll1		NeC-MSC NeC-MSC	NeC-MSC Ivy City Yard		sensors_VER13.xls sensors_VER13.xls	sample3000r5.hed sample3000r5.hed	sample10000r3.hed sample10000r3.hed	testing of the sync again; successful
052605_roll2		Ivy City Yard	Ivy City Yard		sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	
052605_roll3		Ivy City Yard	Ivy City Yard		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	
052605_roll4		Ivy City Yard	Union Station		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	
002000_10114		ivy only ruid	Chief Claudi		30113013_VETVTO.XI3	Sampicocooro.nea	Sample roodoro.ned	
052605 01	052605 01	Union Station Wash DC	Baltimore, MD	Track 3	sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	Observed satruration on lateral accels;
			,					sign issue with strains (ENSCO); signs were changed on
								all strain gages in Baltimore; print outs modified
052605 02	052605 02	Baltimore, MD	Wilmington	Track 2	sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	t~700, high lat/vert activity, high strains
_	-		•		_	·	·	t~865 neg noise spikes on some strains;
								t~1570-1656 lost power to SCU2; 1/2 of channels lost
								t~2060 poss noise spike on Sp6 gages
052605_03	052605_03	Wilmington	MP AP5	Track 1, Track 2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	switch to Tr 2 near AP16;
								lateral accel 2 (piezoelectric on axle) stopped working
								(const up/down drift) stopped behaving this way
								~MP AP8
052605_04	052605_04	Philadelphia	MP AN 84.5		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Labview System Crash Stopped Collection; High
								Speed System Continued to Collect ~45 secs
052605_05	052605_05	MP AN 82	Newark NJ		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Gage on Spoke 6F2 starting to get noisy (Ig spikes)
								consistently; noise spikes on Spoke 3R2, Spoke 6F1
								seeing a bit on Spoke 3 R1 as well Near MP AN12 (t~2300) big vert hit & activity;
								t=2340 MOANING OF BRAKES AND BIG
								STRAINS DURING BRAKING
052605 06	052605 06	Newark NJ	New York (MP W3)		sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	strain signals are not noisy anymore
052605_07	052605 07	New York, NY (MP E6)	New York (MP E 14)	Track 2	sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	t=420 HIGH STRAINS ON BRAKING
******								no moaning on instr axle
052605_08	052605_08	New York (MP E 15)	MP MN55	Track 2 (on MN)	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	t=156 HIGH STRAINS ON BRAKING
-	_				_			no moaning on instr axle
				Sw to Track 4 MN @ MN23				t~2000 Mild case of high strains during
								braking near MP MN 44
052605_09	052605_09	MP MN55.5	MP MN 65	Start on MN Tr 4	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	t~200 Mild case of high strains during braking
052605_10	052605_10	MP MN 65	MP MN 72 New Haven	On MN Tr 4	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	spoke 3 R2 a bit noisy @t~180
052605_11	052605_11	MP MN 72 New Haven	MP AB 75	Start Amtrak Track 1	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	little lateral jolt @ t~105; CSP6F1 noise spikes
								around t~150

Date Test Run

26-May-05 Washington to Boston, 7-inch Cant Deficiency Run Car 3413 on Lead End of Consist (PC 2038 Leading) 3000 samples/sec on ENSCO System, 10,000 Hz on Amtrak System Train Configuration Sample Rate

Set to 1000 Hz for ENSCO System Only; No Anti-Alias Filter Used on Amtrak System Anti-Alias Filter Setting

3kHz (32 ch) System 10kHz (16 ch) System

052605_18

3kHz (32 ch) System Filename (*.ABT, *.CAL, *.GPS)	10kHz (16 ch) System Filename (*.001)	Start Location	End Location	Track (if avail)	Channels	Header (3kHz)	Header (10kHz)	Comments
(3.51, 10.12, 10.10)	(.001)	Start Education	End Eddardii	Switch to Tr 2 @ t=400	Chambio	rioddor (om iz)	rioddor (romiz)	Commonto
052605_12	052605_12	MP AB 75	MP AB 105	Start on Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	still have noise on CSPK3 R2; t=400 HIGH STRAINS FOR LONG DURATION DURING BRAKING NEAR MP AB 85 t=600 HIGH STRAINS FOR LONG DURATION DURING BRAKING NEAR MP AB 90 CSPK6 F2 noisy prior to braking @ MP AB 90, cleared up after braking
052605_13	052605_13	MP AB 105	New London CT (MP AB 123)) Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	t=90, spikes in vertical and strains on bridge t=480 MP AB116 HIGH STRAINS BRAKING INTO CURVE FOLLOWED BY VERTICAL HITS ON BRIDGE
052605_14	052605_14	New London CT (MP AB 123)) MP AB 134	Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	No Significant Activity
052605_15	052605_15	MP AB 134	MP AB 185	Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Bit of noise develop on CSPK3 R2 t~370; t~915, noise spikes on some gages t =984 @ MP AB159 Braking from 150-60 MPH HIGH STRAINS DURING BRAKING; ALMOST +/- 1000uE, used suppression braking (1/2 pressure), planned braking t~1212 SMALL CASE OF ACTIVITY DUE TO BRAKING; Noise spikes near t~1330 t=1580 @ -MP AB179 Braking HIGH STRAINS DURING BRAKING; used braking of ~35psi (recorded sound file 052605_09.WAV)
052605_16	052605_16	MP AB 185	?	Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	LABVIEW CRASH ENDED COLLECTION; high speed system continued to collect
052605_17	052605_17	MP AB 200	Rte 128 Station	Amtrak Tr2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	t=110 @ -MP ÁB203 Braking HIGH STRAINS DURING BRAKING; t=456 @ -MP AB217 Braking HIGH STRAINS DURING BRAKING;

Sound Files

052605_18

Filename	Start Location	Comments
052605_01.WAV	MP AP 113	Lat Accels Show Signs of Saturation
052605_02.WAV	MP AP 62	Brake Sound?, moderate braking
052605_03.WAV	MP AP 31	Brake Sound?, moderate braking
052605_06.WAV	~MP AN 11	Moaning of brakes during braking with high strain activity
052605_09.WAV	~MP AB 179	Braking with high strain activity

Rte 128 Station

Boston Terminal

Amtrak Tr2

sensors_VER13.xls sample3000r5.hed sample10000r3.hed No Significant Activity

Date 27-May-05

Test Run Boston to Washington, 7-inch Cant Deficiency Run
Train Configuration Car 3413 on Trail of Consist (PC 2016 Leading)
Sample Rate 3000 samples/sec on ENSCO System, 10,000 Hz on Amtrak System
Anti-Alias Filter Setting Set to 1000 Hz for ENSCO System Only; No Anti-Alias Filter Used on Amtrak System

3kHz (32 ch) System 10kHz (16 ch) System Filename Filename

Filename	Filename							
(*.ABT, *.CAL, *.GPS)	(*.001)	Start Location	End Location	Track (if avail)	Channels	Header (3kHz)	Header (10kHz)	Comments
052705_zero		Boston Facility	Boston Facility		sensors_VER13.xls			zeroes the gages and the accelerometers
052705_shunt		Boston Facility	Boston Facility		sensors_VER13.xls		sample10000r3.hed	shunting strain gages
052705_shuntaxle Lat2		Boston Facility	Boston Facility		sensors_VER13.xls		sample10000r3.hed	
052705_freq		Boston Facility	Boston Facility		sensors_VER13.xls		sample10000r3.hed	
052705_sweep		Boston Facility	Boston Facility		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Chs 1 & 17, 100 to 8K 5 secs 2V Pk-to-Pk sine wave
050705		B 4 5 77	B E		\/ED40_1	1 0000 51 1	1 40000 01 1	1 - 1 4 - 147 00011 01/ - 1 1 - 1
052705_sine		Boston Facility	Boston Facility					channels 1 and 17, 200Hz 2V peak to peak sine wave
052705_sync		Boston Facility	Boston Facility				sample10000r3.hed	
052705_sweep2		Boston Facility	Boston Facility		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	sweep 1 bad sine; wave not triangular; filename should be sync2
052705_zero2		South Street Sta.	South Street Sta.		sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	re-zero axle strain gages only
052705 zero3		South Street Sta.	South Street Sta.					re-zero all strain gages only
_					_	•	·	
052705_01	052705_01	South Street Sta.	Rte 128 Sta	Track 1	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	After departure, adjusted disc temperature (with TC)
052705 02	052705 02	Rte 128 Sta	~ MP AB193.5	Track 1	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Caliper Pad Accels bad t~160,650-700
_	-			Sw to Track 2 @ t~740 (MP AB 199)	=	·	·	·
052705_03	052705 03	~ MP AB193.5	~ MP AB193.5	Track 2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	No Significant Data
052705_04	052705 04	~ MP AB193.5	Providence Sta.	Track 2	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	
				Sw to Track 1 @ t~490 (MP AB 186)				
052705_05	052705_05	Providence Sta.	~MP AB 160	Track 1	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	Spoke 6 F2 seeing noise spikes; t=860 noise on all gages
052705 06	052705 06	~MP AB 160	~MP AB 159	Track 1	sensors VFR13 vis	sample3000r5 hed	sample10000r3.hed	
052705_07	052705_00	~MP AB 159	New London CT (MP AB 124)		sensors VER13.xls		sample10000r3.hed	110 Olgilliodin Bala
052705_07	052705_07	New London CT (MP AB 122)		Track 1	sensors VER13.xls			Noise spikes on Spoke6F2 off and on;
002700_00	002700_00	New London OT (Will 71D 122)	WII 71877	Track 1	30113013_121110.313	oumpicoodoro.rica	sample recours.nea	t=1236 LATERAL HIT BUT NO ACTIVITY ON STRAINS
052705_09	052705_09	~MP AB 76	New Haven CT (~MP 72)	Track 1	sensors VER13.xls	sample3000r5 hed	sample10000r3.hed	1 1200 EXTERNETHE BOT NO NOTIVITY ON OTHER
052705_10	052705_10	New Haven CT (~MP 72)	MP MN 53	Track 1 Metro North	sensors VER13.xls		sample10000r3.hed	
052705_11	052705_10	MP MN 53	MP MN 53	Track 1 Metro North			sample10000r3.hed	LABVIEW CRASH ENDED COLLECTION;
002.00_11	002.00	55	55	Tradic Timeso Traisi	00110010_1211101110	campiococcioca	od.iipio roccoro.iiod	high speed system continued to collect
052705 12	052705 12	MP MN 50	MP MN 33	Track 1 Metro North	sensors VER13.xls	sample3000r5.hed	sample10000r3.hed	3 .,
052705 13	052705 13	MP MN 32	MP MN 17	Track 1 Metro North	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	
052705_14	052705_14	MP MN 17	MP E19					LABVIEW CRASH ENDED COLLECTION;
··· ·· -	· · · · -				_	·	·	high speed system continued to collect
052705_15	052705_15	MP E18	New York		sensors_VER13.xls			
052705_16	052705_16	New York	New York		sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	LABVIEW CRASH ENDED COLLECTION;
								high speed system continued to collect
052705_17	052705_17	New York	~Secaucus NJ Station	Track 3	sensors_VER13.xls		sample10000r3.hed	No GPS file
052705_18	052705_18	~MP W6	Newark NJ	Track 3	sensors_VER13.xls		sample10000r3.hed	
052705_19	052705_19	Newark NJ	MP AN 40	Track 3	sensors_VER13.xls		sample10000r3.hed	
052705_20	052705_20	MP AN 41	MP AN 84.5	Track 3	sensors_VER13.xls	sample3000r5.hed	sample10000r3.hed	t~517, spoke 6 F1 & F2 noisy; notice Axle Lat 3 high response in curves
052705 21	052705 21	Philadelphia Sta	MP AP 10	Track 3	sensors VER13.xls	sample3000r5 hed	sample10000r3 hed	notice Axie Lat 3 high response in curves
052705 22	052705_22	MP AP 10	Wilmington Station	Track 3	sensors_VER13.xls		sample10000r3.hed	
052705_23	052705_23	MP AP 27	MP AP 61	Track 3	sensors VER13.xls		sample10000r3.hed	
052705 24	052705_26	MP AP 61	MP AP 64	Track 3	sensors VER13.xls		sample10000r3.hed	Noise develop on Spoke6 F1 gage
052705_25	052705_25	MP AP 65	MP AP 74	Track 3	sensors_VER13.xls		sample10000r3.hed	III. III on oponoo i i gago
052705_26	052705_26	MP AP 75	MP AP 78	Track 3	sensors VER13.xls		sample10000r3.hed	
052705_20	052705_20	MP AP 79	MP AP 89	Track 3	sensors VER13.xls		sample10000r3.hed	
052705_27	052705_27	MP AP 89	Baltimore Station	Track 3	sensors VER13.xls		sample10000r3.hed	
052705_20	052705_20	Baltimore Station	BWI Station	Track 3	sensors VER13.xls		sample10000r3.hed	
052705_29	052705_29	BWI Station	MP AP 134	Track 3	sensors_VER13.xls			
552.00_00	332700_00	2 366601	10-		555015_VE1110.Als	capicooooio.iieu	capic roccord.neu	

Date

Test Run

Washington-NY-Washington, 7-inch Cant Deficiency Speed Profile
Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to NY: Cars 3413, 3534 on Trail of Consist (PC 2038 Trailing) Train Configuration

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting 800 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System Filename

i ilciiaiile					
(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
061605_zero	NeC-MSC	NeC-MSC		sensors_VER22.xls	zero strain gages, accels
061605_shunt	NeC-MSC	NeC-MSC		sensors_VER22.xls	
061605_sweep1	NeC-MSC	NeC-MSC		sensors_VER22.xls	used "sync" channel
061605_sweep2	NeC-MSC	NeC-MSC		sensors_VER22.xls	used CTRSPK6F2
061605_sweep3	NeC-MSC	NeC-MSC		sensors_VER22.xls	USED CTR2SPK4_6
061605_sweep4	NeC-MSC	NeC-MSC		sensors_VER22.xls	used LBOXVert2
061504_freq1	NeC-MSC	NeC-MSC		sensors_VER22.xls	used "sync" channel w/88Hz
061504_freq2	NeC-MSC	NeC-MSC		sensors_VER22.xls	used CTRSPK6F2 w/88Hz
061504_freq3	NeC-MSC	NeC-MSC		sensors_VER22.xls	USED CTR2SPK4_6 w/88Hz
061504_freq4	NeC-MSC	NeC-MSC		sensors_VER22.xls	used LBOXVert2 w/88Hz
061605ivycity1	NeC-MSC	Ivy City Yard		sensors_VER22.xls	
061605ivycity2	Ivy City Yard	Ivy City Yard		sensors_VER22.xls	
061605ivycity3	Ivy City Yard	Ivy City Yard		sensors_VER22.xls	
061605ivycity4	Ivy City Yard	Union Station		sensors_VER22.xls	
061605_01 061605_02	Union Station	~MP 101 AB Baltimore Sta	Track 2	sensors_VER22.xls	No GPS t~350, brake appl; t~450 lost temp sensor, then came back CTR2SPK3_R2 noisy off and on; t~630 brake application; t~880 VERT HITS WABTEC/SAB-WABCO axle more active than Knorr axle sync signal no good for first file. Stopped to fix speed signal (sine wave) and GPS GPS failure 10 seconds in
061605_03	Baltimore Sta	~Bush River	Track 3	sensors VER22.xls	t~640 brake application?
				_	t~720 vertical hits on bridge t~920 brake appl SMALL AMOUNT OF OSCILL DURING BRAKING, tried to capture sound
061605_04	~Bush River	~MP 51AP	Track 2	sensors_VER22.xls	t~160 brake appl SMALL AMOUNT OF OSCILL DURING BRAKING t~260 vertical activity; t~345 big vertical hit
061605_05	~MP 51AP	Wilmington Station	Track 2	sensors_VER22.xls	t~390 BIG VERTICAL HIT WABTEC/SAB-WABCO axle more active than Knorr axle t~620 BRAKE APPLICATION W/SMALL AMPLITUDE OSCILLATION, FOLLOWED

Date 16-Jun-05

Test Run Washington-NY-Washington, 7-inch Cant Deficiency Speed Profile

Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to NY: Cars 3413, 3534 on Trail of Consist (PC 2038 Trailing)

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting 800 Hz

3kHz (65 ch) System

061605_14

061605 15

061605 16

Header File Used sample3000_65r5.hed

New York Penn Sta

Secacaus,NJ

Newark, NJ

Secacaus,NJ

Newark, NJ

~MP 30AN

Filename (*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail)	Channel List/Settings	Comments
			· · · · · · · · ·	<u> </u>	BY BIG VERTICAL HIT
61605_06	Wilmington	Near Philadelphia Yard		sensors_VER22.xls	t~95, 108 BIG VERTICAL HITS WABTEC/SAB-WABCO
					axle more active than Knorr axle
					t~285 BIG VERTICAL HITS WABTEC/SAB-WABCO
					axle more active than Knorr axle
					t~405,411 VERICAL HITS;
					t~925, VERY SMALL BRAKE OSCILL ON
					WABTEC/SAB-WABCO DISC
61605_07		'art Philadelphia 30th Street	Sta	sensors_VER22.xls	Nothing of Interest
061605_08	Philadelphia 30th St	tre₁∼MP 69 AN		sensors_VER22.xls	t~70-80, 160 - Elevated activity on WABTEC/SAB-WABCO disc more active than Knorr axle
					t~225, 337 BIG VERTICAL ACTIVITY WABTEC/SAB- WABCO axle more active than Knorr axle
					t~550 elevated activity on WABTEC/SAB-WABCO disc in curve
061605 09	~MP 69 AN	~MP 48AN		sensors VER22.xls	t~70 heard squeeling though curve, recorded sound file
_				_	t~97 VERY LARGE VERTICAL HIT WABTEC/SAB-WABCO axle more active than Knorr axle
					t~562 SMALL OSCILLATION DURING BRAKING
61605_10	~MP 48AN	~MP 21AN		sensors_VER22.xls	
061605_11	~MP 21AN	Newark, NJ		sensors_VER22.xls	t~40-50, LARGE VERTICAL HITS WABTEC/SAB-WABCO axle more active than Knorr
061605 12	Newark, NJ	~MP 7AN		sensors VER22.xls	
061605 13	~MP 6AN	New York Penn Sta		sensors VER22.xls	

sensors_VER24.xls

sensors VER24.xls

sensors VER24.xls

t~190 saw activity in brake mount tri-axial accel

t~500 long braking with activity on Knorr brake

t~840 long braking with activity on Knorr brake

t~200 during braking, saw Knorr Br Mount tri-axial

accel vibrating +/-4g but no action on WABTEC/SAB-WABCO

t~90 vertical hit

mount accel

mount accel

Date

Test Run

Washington-NY-Washington, 7-inch Cant Deficiency Speed Profile
Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to NY: Cars 3413, 3534 on Trail of Consist (PC 2038 Trailing) Train Configuration

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting 800 Hz

sample3000_65r5.hed Header File Used

3kHz (65 ch) System Filename

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail)	Channel List/Settings	Comments
061605_17	~MP 30AN	~MP 55AN	Track 3	sensors_VER24.xls	t~290 noise again on CTR2SPK3_R2,
					then went away; intermittent
					"Noisy" signal on WABTEC/SAB-WABCO axle disc temperature
061605_18	~MP 55AN	N. Philadelphia	Track 3	sensors_VER24.xls	t~470, VERTICAL HITS WABTEC/SAB-WABCO axle more
					active than Knorr
					t~630 appeared to bea lateral hit only
					Noise reappear on CTR2SPK3_R2
061605_19	N. Philadelphia	Philadelphia 30th Street	Sta	sensors_VER24.xls	
061605_20	Philadelphia 30th Stre	~Wilmington, DE		sensors_VER24.xls	t~920 Disconnected CTR2SPK3_R2
061605_21	Wilmington Sta	~Newark DE		sensors_VER24.xls	t~80 Axle1 CTRSPK6R1 Died; t~220 AXLECSPK6 Died
061605_22	~Newark DE	~MP 61AP		sensors_VER24.xls	
061605_23	~MP 62AP	MP 87AP		sensors_VER24.xls	
061605_24	MP 88AP	Baltimore Station		sensors_VER24.xls	
061605_25	Baltimore	Within Baltimore Tunnel		sensors_VER24.xls	Discovered AXLE2CSPK3 Disabled
061605_26	Within Baltimore Tunn	MP 106AP		sensors_VER24.xls	Working on Strain Gage Connections
061605_27	MP 106AP	Near Ivy City		sensors_VER24.xls	t~200 high strains during braking, very low amplitude
					motion

Sound Files

Filename	Start Location
061605_01.WAV	~Bush River
061605 02.WAV	~MP 68AN

Date 17-Jun-05

Test Run Washington-Boston, 90-inch Cant Deficiency Speed Profile
Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Boston

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

Filename

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
board1	NeC-MSC	NeC-MSC	sensors_VER25.xls	used "sync" channel w/95 Hz 2 V Pk-Pk
board2	NeC-MSC	NeC-MSC		used CTRSPK6F1 w/95 Hz 2 V Pk-Pk
board3	NeC-MSC	NeC-MSC		used AXLE1RLINK w/95 Hz 2 V Pk-Pk
board4	NeC-MSC	NeC-MSC		used LBOXLat1 w/95 Hz 2 V Pk-Pk
sweep1	NeC-MSC	NeC-MSC		used "sync" channel w/4.0 V Pk-Pk sin w/100Hz-3KHz
				over 5 seconds
sweep2	NeC-MSC	NeC-MSC		used CTRSPK6F1 w/4.0 V Pk-Pk sin w/100Hz-3KHz
				over 5 seconds
sweep3	NeC-MSC	NeC-MSC		used AXLE1RLINK w/4.0 V Pk-Pk sin w/100Hz-3KHz
				over 5 seconds
sweep4	NeC-MSC	NeC-MSC		used LBOXLat1 w/4.0 V Pk-Pk sin w/100Hz-3KHz
				over 5 seconds
zeroes	NeC-MSC	NeC-MSC		zero strain gages, accels
shunt	NeC-MSC	NeC-MSC		All strain gages shunted; CTR2SPK6_4 WILL NOT
004705 in alter	N-C MCC	N-O MOO		SHUNT, BLACK LEAD OPEN
061705_ivycity1	NeC-MSC	NeC-MSC		Moving in Yard
061705_ivycity2	Ivy City Yard	Ivy City Yard Union Station		CTROCRICC 4 in Ones
061705_ivycity3	Ivy City Yard	Union Station		CTR2SPK6_4 is Open, AXLE2CSPK6_5 VERY NOISY
				AXLEZCSPN0_3 VERT NOIST
061705 01	Union Station	~MP AP131		
061705_01	~MP AP131	~MP AP 99		AXLE2CSPK6 seems a bit noisy from time to time
001700_02	WII 7 II 10 I	WII 74 00		CTR2SPK3R2 intermittent noise (hash on top of signal)
				t~825 BIG VERTICAL HIT WABTEC/SAB-WABCO axle more
				active than Knorr axle
				some braking towards end of file
061705 03	~MP AP99	Baltimore Tunnel		J
061705 04	Baltimore Tunnel	Baltimore Tunnel		t~95 BRAKE APPLICATION, MED LEVEL
_				OSCILL IN WABTEC/SAB-WABCO DISC
061705_05	Baltimore Tunnel	Baltimore Station		Nothing of Interest, Short File
061705_06	Baltimore Station	~MP AP48		t~475 BIT OF OSCILL ON WABTEC/SAB-WABCO DISC
				DURING BRAKING
				t~530 interesting signal on Faively disk gages ~MP 83
				t~830 MUCH VERTICAL ACTIVITY
				t~1270 VERTICAL ACTIVITY ON BRIDGE
				t~1370 VERTICAL ACTIVITY
				t~1580 Some oscillation observed
061705_07	~MP AP47	~MP AP28	Track 2	
061705_08	Wilmington Sta	Wilmington Sta	Track 2	Odd Oscillation in Spokes as Rolling

Date 17-Jun-05

Test Run Washington-Boston, 90-inch Cant Deficiency Speed Profile
Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Boston

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

	-:1				_	
- 1	-11	er	าล	m	e	

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
061705_09	Wilmington Sta	~MP AP 8.5	Track 2	t~255, 285-400, 510 Vertical Activity
				t~580 VERTICAL HIT @ BEGINNING OF BRAKING
061705_10	~MP AP 8.5	Philadelphia	Track 2	t~135-150 LATERAL ACTIVITY, RBOXVERT2 showed
				signs of saturation
				t~205 BRAKING OSCILLATION ON WABTEC/SAB-WABCO
				DISC
061705_11	Philadelphia	MP AN63.5	Track 2	t=555-570 MUCH ACTIVITY ON WABTEC/SAB-WABCO
				DISC WHILE CURVING
				t~708 VERTICAL ACTIVITY
				t~725, 915-930, 1070 SATURATION OF LBOXVERT2
				DURING CURVING
				TILT SYSTEM FAILED
				t~1060 VERTICAL ACTIVITY
061705_12	MP AN63	MP AN56	Track 2	Nothing of Interest
061705_13	MP AN56	MP AN21	Track 2	TILT SYSTEM RESTORED
				t~430-450 VERTICAL ACTIVITY
				t~885-900 MUCH LATERAL/VERTICAL ACTIVITY
061705_14	MP AN20.5	MP AN11	Track 2	t~35-50 LARGE VERTICAL ACTIVITY
				t~155 Small Oscill During Braking
				t~320 VERTICAL ACTIVITY
061705_15	MP AN11	Newark Station	Track 2	t~60,87 VERTICAL ACTIVITY
061705_16	Newark	MP AN7		t~205 Small Amplitude Oscillation During Braking
				Notice Noise on WABTEC/SAB-WABCO Axle Disk Temp and
				Cyl Press at end of file
061705_17	MP AN7	NY Penn Station		Notice Noise on WABTEC/SAB-WABCO Axle Disk Temp at begin of file
004707 40	.	110 510		
061705_18	NY Penn Station			
061705_19	~MP E18.5	MP MN22		t~350 OSCILLATION OF WABTEC/SAB-WABCO DISK
004705 00	NAD NANIOO	MD MANOO		DURING BRAKING
061705_20	MP MN22	MP MN23		Nothing of Interest
061705_21	MP MN23	~MP MN 39		t~150-170,310,865 OSCILLATION OF WABTEC/SAB-WABCO
				DISK DURING BRAKING
004705 00	NAD MAN OO	MD MM 40		t~350-370 LARGE VERTICAL ACTIVITY
061705_22	MP MN 39	~MP MN 42		t~120 Brake Activity
061705_23	~MP MN 43	~MP MN 55		t~30,165,620 OSCILLATION OF WABTEC/SAB-WABCO
004705 04	MD MN 55	MD MNI CO		DISK DURING BRAKING
061705_24	~MP MN 55	MP MN 60		t~80 LARGE VERTICAL ACTIVITY
				t~270, End of File, BRAKING OSCILL ON
				WABTEC/SAB-WABCO DISC

Date 17-Jun-05

Test Run Washington-Boston, 90-inch Cant Deficiency Speed Profile
Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Boston

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

Εi	ler	ıaı	m	Δ

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
061705_25	MP MN 60	MP MN 72		t~170,220,305,490,555,630 BRAKING OSCILL
				ON WABTEC/SAB-WABCO
061705_26	MP MN 72	MP MN 72		Oscillation During Braking, Short File
061705_27	MP MN 73	MP MN 73		Oscillation During Braking, Short File
061705_28	MP MN 73	MP AB95		t~610 Odd Oscillations After Applications
061705_29	MP AB97	MP AB104		t~120 MAJOR OSCILLATION OF WABTEC/SAB-WABCO
				DISC DURING BRAKING!!!!!
				t~240 OSCILLATION OF WABTEC/SAB-WABCO DISC
				DURING BRAKING
061705_30	MP AB104	MP AB116		t~180, 405 SMALL OSCILLATION OF
				WABTEC/SAB-WABCO DISC DURING BRAKING
				t~210 HIGH VERTICAL ACTIVITY
				t~560 HIGH AMPLITUDE OSCILLATION OF
				WABTEC/SAB-WABCO DISC DURING BRAKING
061705_31	MP AB116	~MP AB 122		t~95, 165 OSCILLATION OF WABTEC/SAB-WABCO DISC
				DURING BRAKING
				t~120 LONG OSCILLATION, SMALL
				AMPLITUDE OF WABTEC/SAB-WABCO DISC DURING
				BRAKING
061705_32	~MP AB 122	MP AB126		t~170 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC
				WITH NO BRAKING IN CURVE
				t~335 OSCILL DURING BRAKING ON
				WABTEC/SAB-WABCO DISC;
				t~385 HIGH OSCILL DURING BRAKING ON
				WABTEC/SAB-WABCO DISC
				t~350 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC
				IN CURVE
061705_33	MP AB126	MP AB129		t=0 OSCILL OF WABTEC/SAB-WABCO DISC DURING
				BRAKING
				t~70 VERY LARGE OSCILLATION OF
				WABTEC/SAB-WABCO DISC DURING BRAKING
061705_34	MP AB130	MP AB138		t~90-115 LONG OSCILLATION OF WABTEC/SAB-WABCO
				DISC DURING BRAKING
				t~220 OSCILL OF WABTEC/SAB-WABCO DISC DURING BRAKING
				t~420 VERY LARGE OSCILLATION OF
				WABTEC/SAB-WABCO DISC DURING BRAKING
061705 35	MP AB138	MP AB140		t~80-110 VERY LARGE OSCILLATION OF
001700_33	IVIE. VD 190	IVIF AD 140		WABTEC/SAB-WABCO DISC DURING BRAKING
				HAD I ECOAD-HADOO DISC DUNING BRAKING

Date 17-Jun-05

Test Run Washington-Boston, 90-inch Cant Deficiency Speed Profile
Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Boston

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

Filename

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
061705_36	MP AB140	MP AB 156		t~130-140 VERY LARGE OSCILLATION OF
				WABTEC/SAB-WABCO DISC DURING BRAKING
				2000uE pk-pk from 90 mph
061705_37	MP AB 156	MP AB 160		t~45 VERY HIGH VERY LONG OSCILLATION
				OF WABTEC/SAB-WABCO DISC DURING BRAKING
				FULL SERVICE BRAKE APPLICATION
				FROM 150 mph
061705_38	MP AB 160	MP AB 186		t~540 OSCILL OF WABTEC/SAB-WABCO DISC DURING
				BRAKING, SOUND RECORDED
061705_39	MP AB 186	MP AB 187		SHORT FILE, MILD ACTIVITY DURING
_				CURVING

END OF TESTING

Sound Files

Filename	Start Location	
061705_01.WAV	~MP MN 47	
061705_02.WAV	~MP MN 59	
061705_03.WAV	~MP MN 72	
061705 04.WAV	~MP AB 179	BRAKING

Date 18-Jun-05

Test Run Boston-Washington, 9-inch Cant Deficiency Speed Profile

Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Washington

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

Filename				
/* A	D2 * CAI	1 * CDC\		

(*.AB3, *.CAL, *.GPS)	Start Location	End Location	Track (if avail) Channel List/Settings	Comments
zeroes	South Street Station	South Street Station	sensors_VER25.xls	zero strain gages, accels
shunt	South Street Station	South Street Station		All strain gages shunted; CTR2SPK6_4 WILL NOT
				SHUNT (BLACK LEAD OPEN), CTR2SPK4_6
				WILL NOT SHUNT
board1	South Street Station	South Street Station		used "sync" channel w/82 Hz 4 V Pk-Pk
board2	South Street Station	South Street Station		used CTRSPK6F1 w/81 Hz 4 V Pk-Pk
board3	South Street Station	South Street Station		used CTR2SPK6_5 w/81 Hz 4 V Pk-Pk
board4	South Street Station	South Street Station		used AXLE2OSPK3 w/81 Hz 4 V Pk-Pk
sweep1	South Street Station	South Street Station		used "sync" channel w/4.0 V Pk-Pk sin w/100Hz-3KHz over 5 seconds
sweep2	South Street Station	South Street Station		used CTRSPK6F1 w/4.0 V Pk-Pk sin w/100Hz-3KHz over 5 seconds
sweep3	South Street Station	South Street Station		used CTR2SPK6_5 w/4.0 V Pk-Pk sin w/100Hz-3KHz over 5 seconds
sweep4	South Street Station	South Street Station		used AXLE2OSPK3 w/4.0 V Pk-Pk sin w/100Hz-3KHz over 5 seconds
061805_01	South Street Station	MP 225AB		
061805_02	MP 225AB	Rte 128		t~270,295,313 VERTICAL ACTIVITY t~325 Short signs of oscill on WABTEC/SAB-WABCO Disc during braking
061805_03	Rte 128	~MP 201.5AB		t~475 LARGE OSCILLATION OF WABTEC/SAB-WABCO DISC DURING BRAKING, FS Stop from 150 MPH
061805_04	~MP AB 201.5	Providence Station		t-233,345 Mild Activity on WABTEC/SAB-WABCO Disc During Braking t-415 Activity on WABTEC/SAB-WABCO Disc During Curving
061805 05	Providence Station	~MP AB 176.5	Track 1	t~530-550 LARGE OSCILLATION OF
00.000_00	Trovidence etation	WII 715 170.0	Tr 2 @t=370	WABTEC/SAB-WABCO DISC DURING BRAKING FS Stop
061805_06	~MP AB 176.5	~MP AB 160	Tr2	t~240 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC DURING FS BRAKING
			Sw to Tr 1~t350	t~505-542 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC DURING FS BRAKING
061805_07	~MP AB 160	~MP AB 140	Track 1	t~30 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC
				DURING BRAKING FS Braking from 125 MPH t~160 HIGH ACTIVITY ON WABTEC/SAB-WABCO DISC DURING BRAKING FS Braking from 115 MPH
061805 08	~MP AB 140	~MP AB 133 Mystic CT	Track 1	20 2
061805_09	~MP AB 131	MP AB 114	Track 1	t~255,420 ACTIVITY ON WABTEC/SAB-WABCO DISC DURING CURVING
061805_10	MP AB 114	MP AB 99	Track 1	25

Date 18-Jun-05

Test Run

Boston-Washington, 9-inch Cant Deficiency Speed Profile Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Washington Train Configuration

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

sample3000_65r5.hed Header File Used

3kHz (65 ch) System

-	-:1				_
- 1	-11	er	าลเ	m	e

ugh Curve
DISC
0
0
•
Y
•

Date 18-Jun-05

Test Run Boston-Washington, 9-inch Cant Deficiency Speed Profile

Train Configuration Cars 3413, 3534 on Lead of Consist (PC 2038 Leading) to Washington

Sample Rate 3000 samples/sec

Anti-Alias Filter Setting Set to 800 Hz, Calculated at 750 Hz

Header File Used sample3000_65r5.hed

3kHz (65 ch) System

Filename

END OF TESTING

Sound Files

 Filename
 Start Location

 061805_01.WAV
 ~MP AN14

 061805_02.WAV
 ~MP AN19

Daily Reports

The following reports were provided to test participants by Knorr-Bremse, usually on the same day as the test. There was usually not sufficient time to verify extreme data values cited in the daily reports prior to their dissemination.

These reports are provided for historical reference only. Values cited in the final report should be considered as verified and accurate.

Please note that no daily report was issued following the test conducted on May 27, 2005.

From: Rich.Bowie@knorrbrakecorp.com
Sent: Wednesday, May 18, 2005 10:34 AM

To: Ronald.Newman@fra.dot.gov; edlombardi@comcast.net; nbehety@necmsc.com;

frank.duschinsky@ca.transport.bombardier.com; schramd@amtrak.com

Cc: GAGARIG@amtrak.com; Magdy.El-Sibaie@fra.dot.gov; JWhite@Wabtec.com;

bjoern.neller@faiveleytransport.com; Bernd.Hetterscheidt@faiveleytransport.com

Subject: RE: Summary of Test Train Results 5/16/05

Dear Mr. Newman,

As you requested, following is a summary of the test results from today and instrumentation status.

- 1. The rotating axle mounted accelerometer was inspected and re-tightened en-route from Boston. Performing properly now.
- 2. Aliasing frequency was increased to 1000 Hz with sampling at 4000 Hz initially, but was needed to be changed to 1000 Hz filter with 3000 Hz sampling.
- 3. Thermocouple was added to the back side of the friction ring and replaced spoke thermocouple on the data acquisition.

We observed the following data from the test runs:

Maximum rotor temperatures were observed during the test run were within acceptable limits. We observed maximum rotor temperatures of about 258 F, with an average peak of 200 F. (No Full-Service Stops were performed). Adding 100 degrees for correction factor has the discs temperature within expected and acceptable results. Spoke temperatures were reported to be in the range of less than 150 F. Allowing for a correction factor that is to be determined, they are Still within acceptable limits.

Maximum measured temp on back of the friction face was 275 F

For the accelerations, we noted the following peak values from the charts (detailed evaluation of the data will be conducted shortly):

Location: Direction Maximum

Left Axle Box Vertical 117

Left Axle Box Lateral 38

Right Axle Box Vertical

99

Right Axle Box Lateral

73

Rotating Axle Lateral 30; however values in excess of 200 recorded. This must be evaluated further.

The values recorded all seem to coincided well with each other. We believe to have recorded accurate data that is within acceptable results.

Spoke Strains were monitored and found to be in the range of what was observed during the shakedown run. Today we observed peak values of approximately 2400 uE as compared to approximately 2000uE in the shakedown run.

These data values need to be validated by Ensco and considered further.

Best Regards,

Richard Bowie

Director of Engineering

Knorr Brake Corp.

861 Baltimore Blvd.

Westminster, MD 21157

Phone +(410) 875-1251

Fax + (410) 875 - 9053

- < <mailto:rich.bowie@knorrbrakecorp.com>
 mailto:rich.bowie@knorrbrakecorp.com>
- < <http://www.knorrbrakecorp.com/> http://www.knorrbrakecorp.com>
- < <http://www.knorr-bremse.com/> http:/www.knorr-bremse.com/>

From: Rich.Bowie@knorrbrakecorp.com
Sent: Wednesday, May 18, 2005 10:28 PM

To: Ronald.Newman@fra.dot.gov; edlombardi@comcast.net; nbehety@necmsc.com;

frank.duschinsky@ca.transport.bombardier.com; schramd@amtrak.com

Cc: GAGARIG@amtrak.com; Magdy.El-Sibaie@fra.dot.gov; JWhite@Wabtec.com;

bjoern.neller@faiveleytransport.com; Bernd.Hetterscheidt@faiveleytransport.com;

jquigley@faiveleyrail.com

Subject: RE: Summary of Test Train Results 5/17/05

Dear Sirs,

First, please note that the original email had not updated the date reported in the "Subject" Line to be 5/17/05. This has now been corrected.

Please find below an update to the prior report to include the data reported by NEC from the MPI inspection of TS 10 after the Boston-Washington test run 5/17/05.

Car Was	Axle Now	S/n disc		locatio	on	Spoke#	
3306 W0	3 W0	062/J5713		G		1	
2		W1	S1				
3		W2	S3				
4		W1	W1				
5		W1	W1				
6.		WO	WO		С		
ALL		NO CHANGES	1				1
WO	WO				S		1
2		WO	W2				
3		W2	S1				
4		W2	W2				
5		WO	WO				
6.		W2	W2				

This axle has been replaced.

Rich

----Original Message----

From: Bowie, Rich

Sent: Wednesday, May 18, 2005 10:34 AM

To: 'Newman, Ronald'; 'Ed Lombardi'; 'Norbert Behety'; 'Frank

Deschinsky'; 'David Schramm'

Cc: 'GAGARIG@amtrak.com'; 'El-Sibaie, Magdy'; 'JWhite@Wabtec.com';

'bjoern.neller@faiveleytransport.com';

'Bernd.Hetterscheidt@faiveleytransport.com'

Subject: RE: Summary of Test Train Results 5/16/05

Dear Mr. Newman,

As you requested, following is a summary of the test results from today and instrumentation status.

- 1. The rotating axle mounted accelerometer was inspected and re-tightened en-route from Boston. Performing properly now.
- 2. Aliasing frequency was increased to 1000 Hz with sampling at 4000 Hz initially, but was needed to be changed to 1000 Hz filter with 3000 Hz sampling.
- 3. Thermocouple was added to the back side of the friction ring and replaced spoke thermocouple on the data acquisition.

We observed the following data from the test runs:

Maximum rotor temperatures were observed during the test run were within acceptable limits. We observed maximum rotor temperatures of about 258 F, with an average peak of 200 F. (No Full-Service Stops were performed). Adding 100 degrees for correction factor has the discs temperature within expected and acceptable results. Spoke temperatures were reported to be in the range of less than 150 F. Allowing for a correction factor that is to be determined, they are Still within acceptable limits.

Maximum measured temp on back of the friction face was 275 F

For the accelerations, we noted the following peak values from the charts (detailed evaluation of the data will be conducted shortly):

Location: Direction Maximum
Left Axle Box Vertical 117
Left Axle Box Lateral 38
Right Axle Box Vertical 99
Right Axle Box Lateral 73

Rotating Axle Lateral 30; however values in excess of 200 recorded. This must be evaluated further.

The values recorded all seem to coincided well with each other. We believe to have recorded accurate data that is within acceptable results.

Spoke Strains were monitored and found to be in the range of what was observed during the shakedown run. Today we observed peak values of approximately 2400 uE as compared to approximately 2000uE in the shakedown run.

These data values need to be validated by Ensco and considered further.

Best Regards,

Richard Bowie Director of Engineering

Knorr Brake Corp.
861 Baltimore Blvd.
Westminster, MD 21157
Phone +(410) 875-1251
Fax +(410) 875-9053

< <mailto:rich.bowie@knorrbrakecorp.com>
mailto:rich.bowie@knorrbrakecorp.com>

- < <http://www.knorrbrakecorp.com/> http:/www.knorrbrakecorp.com>
- < <http://www.knorr-bremse.com/> http://www.knorr-bremse.com/>

From: Dave.Welly@knorrbrakecorp.com
Sent: Thursday, May 26, 2005 6:42 PM
To: Ronald.newman@fra.dot.gov

Cc: edlombardi@comcast.net; Rich.Bowie@knorrbrakecorp.com

Subject: FW: Summary of Test Train Results 5/26/05

Dear Mr. Newman,

As you requested, the following is reported regarding today's test run from Washington to Boston.

Upon departure from Washington, no discs were reported to have cracks. After completion of the visual inspection in Boston this evening, a summary will be provided at the 10:00 p.m. conference call.

All instrumentation worked as expected, and no changes/modifications were required during the trip to Boston.

We observed the following data from the test runs:

Maximum rotor temperatures were observed during the test run were within acceptable limits. We observed maximum rotor temperatures of about 300 F, with an average peak of 200 F. Adding 100 degrees for correction factor has the discs temperature within expected and acceptable results.

For the accelerations, we noted to following peak values by observing real time data on the displays:

Location:	Direction	Maximum
Left Axle Box	Vertical	>100
Left Axle Box	Lateral	40
Right Axle Box	Vertical	>100
Right Axle Box	Lateral	40
Rotating Axle	Lateral	40

The values recorded all seem reasonable and coincided well with each other. We believe to have recorded accurate data that is within acceptable results.

Spoke strains were monitored and found to be in the range of what was observed during the first test run. Today we observed peak values of approximately 2100 uE. The highest peak strains were noted to occur when entering suppression from approximately 120 mph. Values of this magnitude were noted just prior to Newark and then further North as well. The strains are within the expected and allowable ranges.

In summary, results were within acceptable range and are believed to be valid.

There is nothing noted that is of concern. Knorr recommends that the testing schedule for tomorrow be conducted as planned.

From: Dave.Welly@knorrbrakecorp.com
Sent: Friday, June 03, 2005 10:50 AM
To: Ronald.newman@fra.dot.gov

Cc: edlombardi@comcast.net; Rich.Bowie@knorrbrakecorp.com

Subject: RE: Summary of Test Train Results 5/26/05

Ron,

As you requested, below is the disc test inspection results following the $5/27~{\rm run}$ from Boston to Washington.

Car Now	Axle	S/n disc	Location	Spoke#	Was
3413	4	067J6642 Wl	С	1	
3214	4	095J6642 W1	С	1	
3214	4	095J6642 W1	С	4	
3214	4	078J6642 W1	С	6	
3214	3	078J6642 W1	С	5	

Please let me know if you have any questions.

From: Rich.Bowie@knorrbrakecorp.com
Sent: Rich.Bowie@knorrbrakecorp.com
Thursday, June 16, 2005 10:06 PM

To: SchramD@amtrak.com; Magdy.El-Sibaie@fra.dot.gov; edlombardi@comcast.net;

frank.duschinsky@ca.transport.bombardier.com; Ronald.Newman@fra.dot.gov

Cc: Dave.Welly@knorrbrakecorp.com; Terry.Welsh@knorrbrakecorp.com;

Joe.DeStefano@knorrbrakecorp.com; Mike.Kmon@knorrbrakecorp.com;

Frank.Guenther@knorr-bremse.com; Christian.Witzleben@knorr-bremse.com; Sherrock.Eric;

Kesler.Kevin; Whitten.Brian; JWhite@Wabtec.com; BjoernNeller@t-online.de;

iquigley@faiveleyrail.com

Subject: Summary of Test Train Results 6/16/05

Dear Mr. Newman,

As you requested, the following was reported regarding the status of the disc inspection:

No changes to spoke inspection status except:

Car Axle S/n disc location Spoke# Was Now $4214 \quad 4 \quad c \quad 4$ W1 W0 (this will be noted in case it re-appears in Boston)

The following is a summary of the instrumentation status.

- 1. GPS did not function for the duration of the trip and may not be functional for the trip
- 2. Two strain gauges on the Knorr disc (Strain gauges 4 and 5) appear to been damaged and may not be functional for the trip. These were noted as not being critical for evaluation of the disc for bending. They were added to get some information about the stresses from thermal expansion. Data collected from today's run should be adequate.

We observed the following data from the test runs:

Maximum rotor temperatures were observed during the test run were within acceptable limits. We observed maximum rotor temperatures of approximately 300F, with an average peak of 200F, measured on the back side of the friction face.

For the accelerations, we noted to following peak values from the charts:

Location:	Direction	Axle 1 Maximum
Axle 2 Maximum		
Left Axle Box	Vertical	100
100	_	
Left Axle Box	Lateral	40
>50		0.0
Right Axle Box	Vertical	80
80	_	
Right Axle Box	Lateral	40
>50		
Rotating Axle	Lateral	>50
30		
TR Mounted Axle	Vertical	20
20		
Brake Mounted Axle	Vertical	10
15		

The values recorded all seem reasonable and coincided well with each

other. We believe to have recorded accurate data that is within acceptable results.

Spoke Strains were monitored and found to be in the range of what was observed previously. Today we observed peak values of approximately 2400 uE. The strains are within the expected and allowable ranges.

In summary, results were within acceptable range and are believed to be valid.

There is nothing noted that is of concern. Knorr recommends that the testing schedule for tomorrow be conducted as planned.

From: Dave.Welly@knorrbrakecorp.com

Sent: Friday, June 17, 2005 11:27 PM

To: Rich.Bowie@knorrbrakecorp.com; SchramD@amtrak.com; Magdy.El-Sibaie@fra.dot.gov;

edlombardi@comcast.net; frank.duschinsky@ca.transport.bombardier.com;

Ronald.Newman@fra.dot.gov

Cc: Terry.Welsh@knorrbrakecorp.com; Joe.DeStefano@knorrbrakecorp.com;

Mike.Kmon@knorrbrakecorp.com; Frank.Guenther@knorr-bremse.com;

Christian.Witzleben@knorr-bremse.com; Sherrock.Eric; Kesler.Kevin; Whitten.Brian;

JWhite@Wabtec.com; BjoernNeller@t-online.de; jquigley@faiveleyrail.com

Subject: Summary of Test Train Results 6/17/05

Dear Mr. Newman,

Disc inspection results will be reported during the 7:30 a.m. conference call on 6/18.

The following is a summary of the instrumentation status.

1. Strain gauge Axle2spk6_4 (on the Knorr disc) was inoperable during the run. This was discussed during the Thursday evening conference call and noted as acceptable to Knorr as this was a redundant gauge.

We observed the following data from the test runs:

Maximum rotor temperatures observed during the test run were within acceptable limits. We observed maximum rotor temperatures of approximately 220F, with an average peak of 150F, measured on the back side of the friction face.

For the accelerations, we noted to following peak values from the charts:

Location:	Direction	Axle 1 Maximum	Axle 2 Maximum
Left Axle Box	Vertical	80	100
Left Axle Box	Lateral	45	>50
Right Axle Box	Vertical	100	100
Right Axle Box	Lateral	>50	>50
Rotating Axle	Lateral	>50	25
TR Mounted Axle	Vertical	20	20
Brake Mounted Axle	Vertical	5	10

The values recorded all seem reasonable and coincided well with each other. We believe to have recorded accurate data that is within acceptable results.

Spoke Strains were monitored and found to be in the range of what was observed previously. Today we observed peak values of approximately 2200 uE. The strains are within the expected and allowable ranges.

In summary, results were within acceptable range and are believed to be valid.

There is nothing noted that is of concern. Knorr recommends that the testing schedule for tomorrow be conducted as planned.

From: Dave.Welly@knorrbrakecorp.com
Sent: Monday, June 20, 2005 1:24 PM

To: Ronald.Newman@fra.dot.gov; SchramD@amtrak.com; MurphyM@amtrak.com;

GagariG@amtrak.com

Cc: Ed.Pritchard@fra.dot.gov; Rich.Bowie@knorrbrakecorp.com; Stephen.Carullo@fra.dot.gov;

Harold.Blankenship@fra.dot.gov; Gary.Fairbanks@fra.dot.gov; George.Scerbo@fra.dot.gov;

Satya.Singh@fra.dot.gov

Subject: Summary of Test Train Results 6/18/05

Dear Mr. Newman,

Disc inspection results from Saturday have not yet been reported.

The following is a summary of the instrumentation status.

1. Strain gauge $Axle2spk6_4$ (on the Knorr disc) was inoperable during the run. This was also inoperable during the 6/17 run from Washington to Boston.

We observed the following data from the test runs:

Maximum rotor temperatures observed during the test run were within acceptable limits. We observed maximum rotor temperatures of approximately 270F, with an average peak of 150F, measured on the back side of the friction face.

For the accelerations, we noted to following peak values from the charts:

Location: Axle 2 Maximum	Direction	Axle 1 Maximum
Left Axle Box 100	Vertical	100
Left Axle Box 25	Lateral	45
Right Axle Box 100	Vertical	100
Right Axle Box >50	Lateral	>50
Rotating Axle 25	Lateral	>50

TR Mounted Axle 20	Vertical	20
Brake Mounted Axle	Vertical	5

The values recorded all seem reasonable and coincided well with each other. We believe to have recorded accurate data that is within acceptable results.

Spoke Strains were monitored and found to be in the range of what was observed previously. Today we observed peak values of approximately 2600 uE. The strains are within the expected and allowable ranges.

In summary, results were within acceptable range and are believed to be valid.

There is nothing noted that is of concern.

Appendix E. Finite Element Analysis Results

Section	<u>Page</u>
Natural Frequency and Spoke Strain Due to Mechanical Effects	E-4
Spoke Strain Due to Thermal Effects	E-19
Spoke Strain Due to Rotational Effects	E-25
Conclusions	E-28

Finite Element Analysis (FEA)

Considered WABTEC/SAB-WABCO Brake Disc

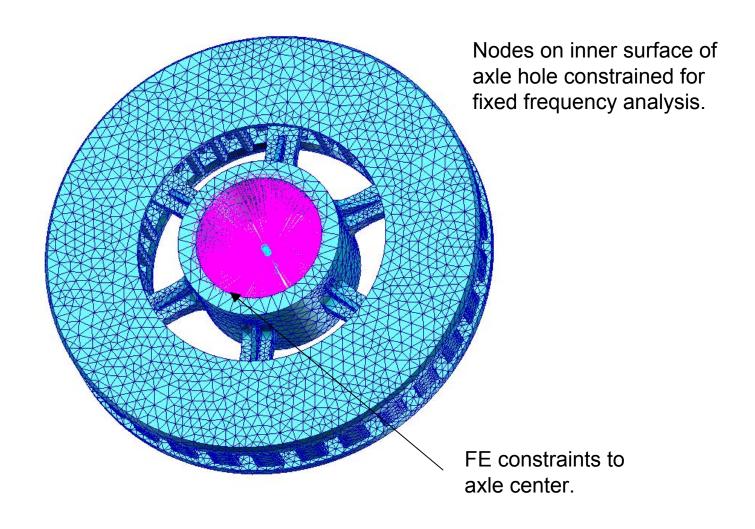
- Material Properties (Steel)
 - Modulus of Elasticity $E = 27.56 \times 10^6 \text{ psi}$
 - Poisson's Ratio = 0.26
 - Density ρ = 0.264 lb/in³
- Finite Element Meshing
 - TET10 Midside Node Elements Used
 - 191700 Nodes In Model
- Considered Single, Unmounted Discs Only
 - No Compressive Stresses From Mounting Process Or Long-Term Use Accounted For

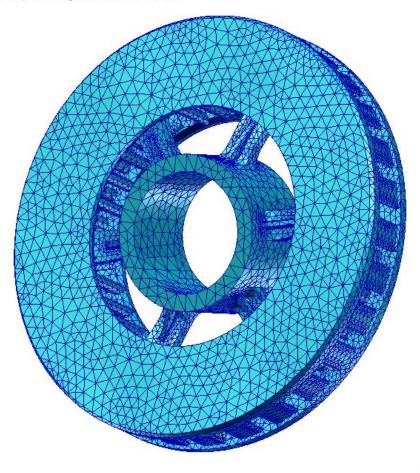
FEA

- Stress Analysis
 - Fixed Hub Mode
 - Free Mode
 - Heat Of Friction Plate~µstrain/degree
 - Rotation Rate Strain
- Fundamental (Natural) Frequencies
 - Fixed Hub Results: First Fundamental Frequency-206 Hz
 - Fixed Hub Results: Second Fundamental Frequency-267 Hz
 - Free Hub Results: First Fundamental Frequency-585 Hz

Natural Frequency and Spoke Strain Due to Mechanical Effects

Finite Element (FE) Solid Model




Table E.1. Natural Frequency Analysis: ACELA Brake Rotor, Fixed Hub

Freq. (Hz)	Mode Shape	
206	Disk rotates out-of-plane about hub	
269	Disk translates out-of-plane about hub	
645	Disk bends into saddle shape	
799	Disk translates in-plane about hub	

Note: For each of the above frequencies there were actually two modes at very slightly different frequencies, of identical shape but rotated with respect to each other.

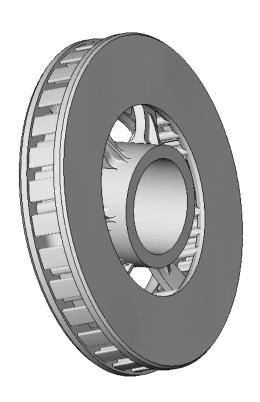
MSC.Patran 2005 09-May-05 10:16:53

Deform: fixed_model, A2:Mode 1 : Freq. = 206., Eigenvectors, Translational,

default_Deformation: Max 2.26+000 @Nd 142861

Frame: 1

Scale = 1.00+000

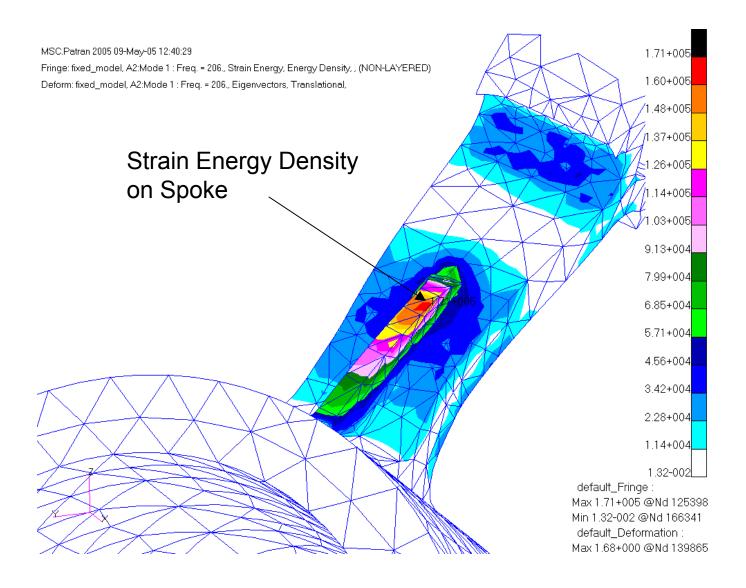

ACELA Brake Rotor ver 6 FULL - new spoke - FEA-test1 :: Frequency Mode Shape : 1 Value = 206.05 Hz Deformation Scale 1 : 0.434447

Out-of-Plane Bending (BOP) Mode

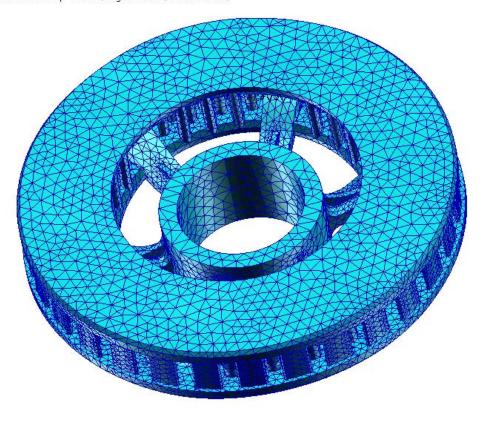
4

ACELA Brake Rotor ver 6 FULL - new spoke - FEA-test1 :: Frequency Mode Shape : 1 Value = 206.05 Hz Deformation Scale 1 : 0.434447

BOP Mode



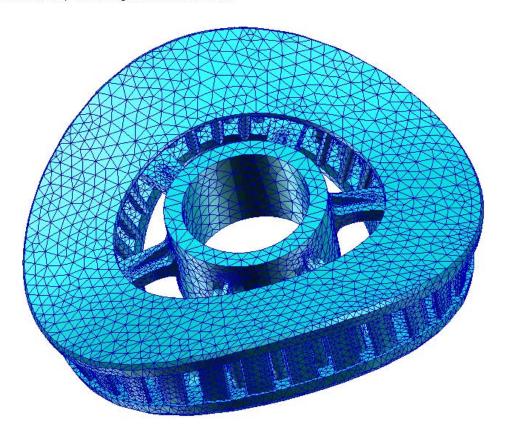
ACELA Brake Rotor ver 6 FULL - new spoke - FEA-test1 :: Frequency Mode Shape : 1 Value = 206.05 Hz Deformation Scale 1 : 0.434447


BOP Mode

FE Results-Fixed Hub Analysis, 1st Mode: 206 Hz

MSC.Patran 2005 15-Jun-05 10:33:43

Deform: fixed_model, A1:Mode 4: Freq. = 268.69, Eigenvectors, Translational,

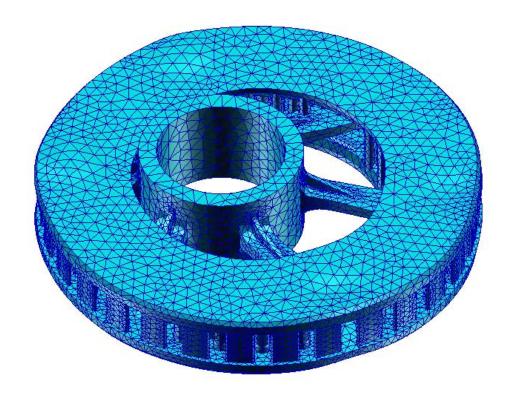

default_Deformation: Max 1.32+000 @Nd 150305

Frame: 1

Scale = 1.00+000

MSC.Patran 2005 15-Jun-05 10:38:21

Deform: fixed_model, A1:Mode 6 : Freq. = 644.92, Eigenvectors, Translational,



default_Deformation: Max 2.45+000 @Nd 152820

Frame: 1 Scale = 1.00+000

MSC.Patran 2005 15-Jun-05 10:40:41

Deform: fixed_model, A1:Mode 8: Freq. = 799.36, Eigenvectors, Translational,

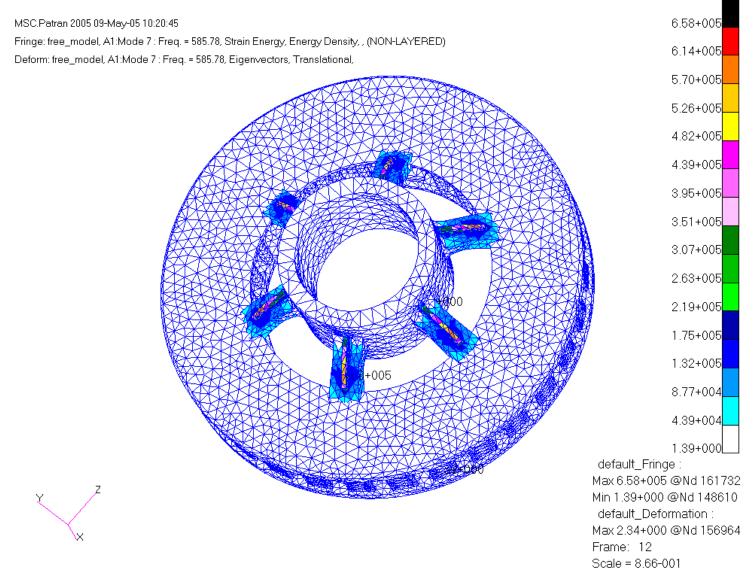
default_Deformation : Max 1.38+000 @Nd 10595

Frame: 1 Scale = 1.00+000

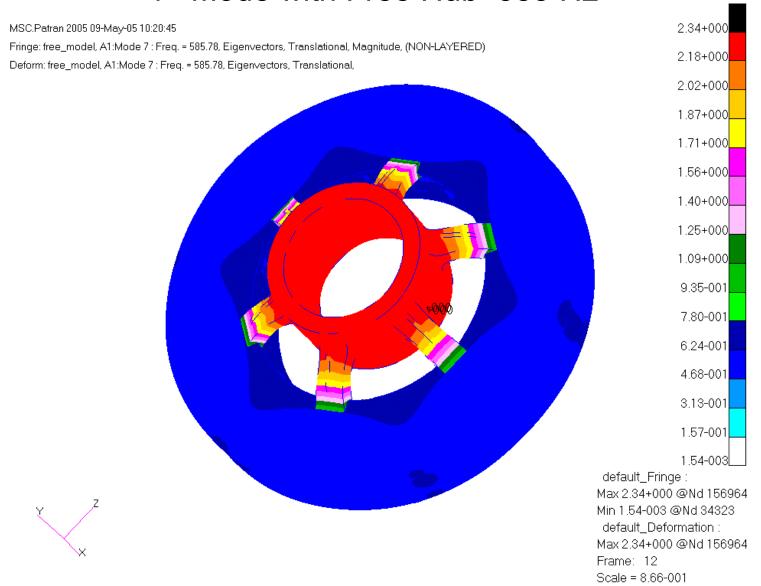
FEA Modes of Vibration 1st Mode with Free Hub–585 Hz

MSC.Patran 2005 09-May-05 10:20:45

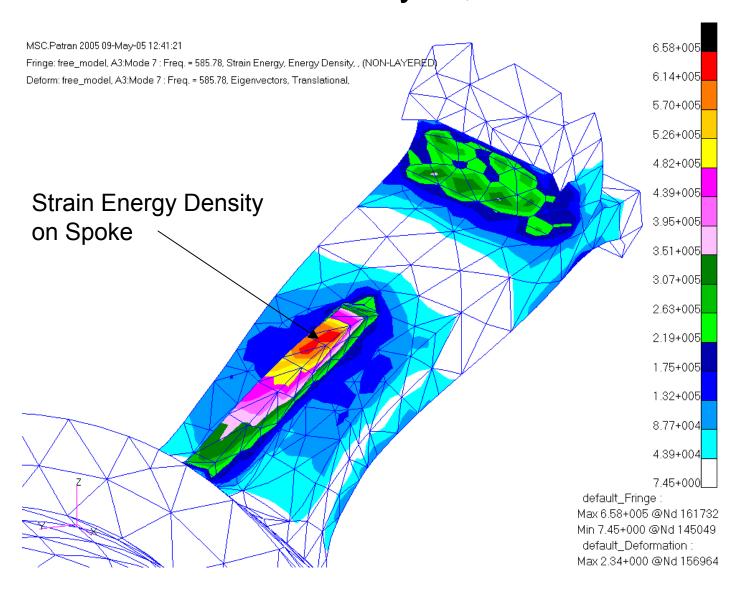
Deform: free_model, A1:Mode 7: Freq. = 585.78, Eigenvectors, Translational,



default_Deformation: Max 2.34+000 @Nd 156964

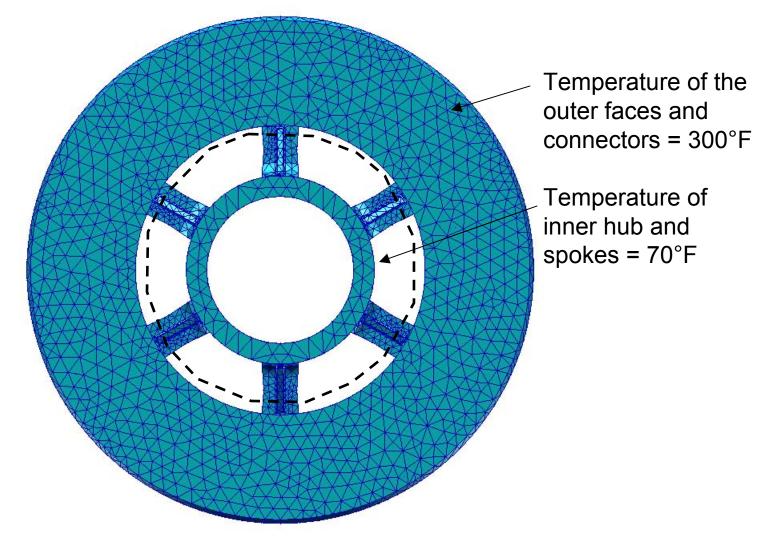

Frame: 1

Scale = 1.00+000

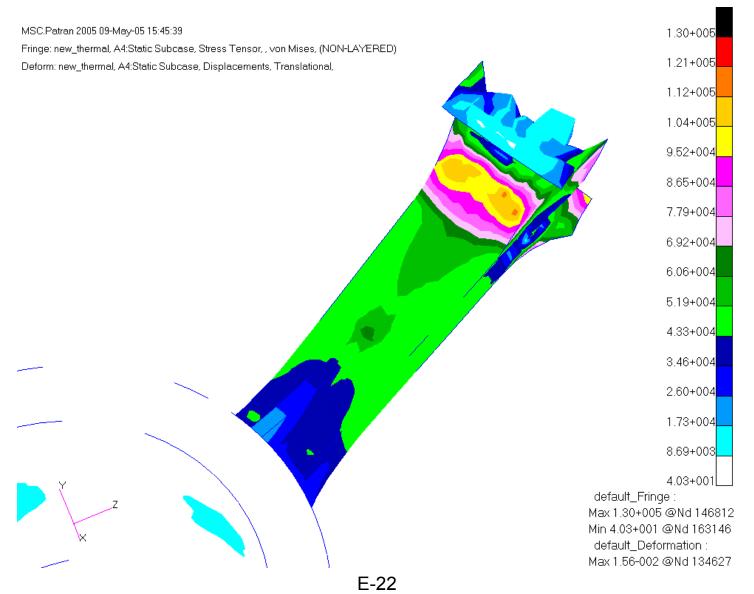

FEA Modes of Vibration 1st Mode with Free Hub–585 Hz

FEA Modes of Vibration 1st Mode with Free Hub–585 Hz

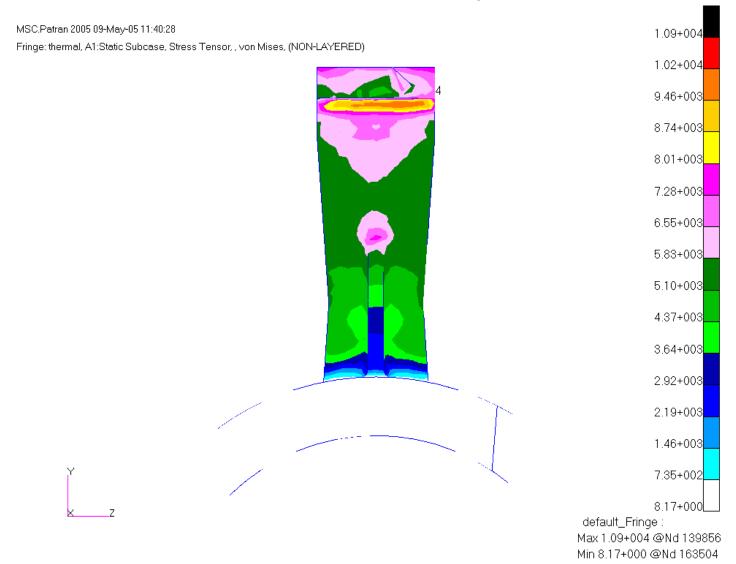
FE Results-Free Hub Analysis, 1st Mode: 585 Hz

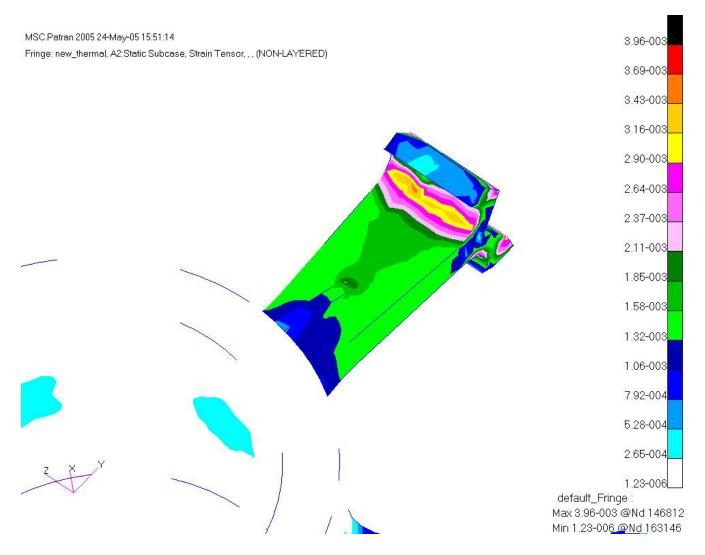


Spoke Strain Due to Thermal Effects

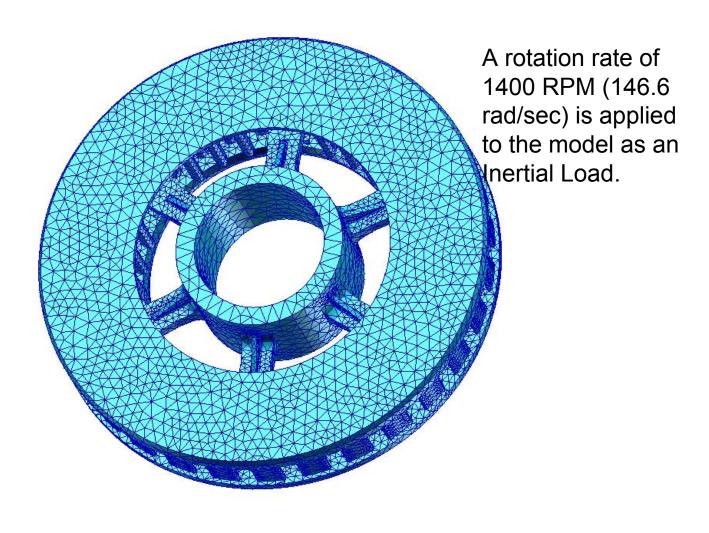

Thermal Stress Analysis

- Material Properties (Steel)
 - Modulus of Elasticity $E = 27.56 \times 10^6 \text{ psi}$
 - Poisson's Ratio = 0.26
 - Density ρ = 0.264 lb/in³
- Temperatures
 - Assumed 70 °F (~Ambient Temperature) at Hub and 300 °F (Estimate of Temperature Resulting From Braking) at Braking Surface
- Mechanical Conditions
 - No External Loads or Rotation of the Disc

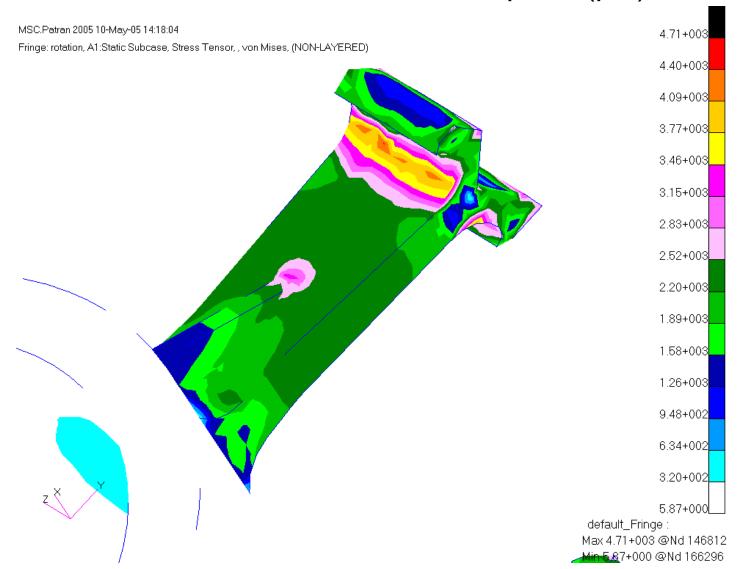

FEA: Thermal Conditions


FEA: 300°F Thermal Spoke Stress (psi)

FEA: Thermal Stress on Spoke



FEA: Spoke Strain Due to Thermal Effects


Spoke Strain Due to Rotational Effects

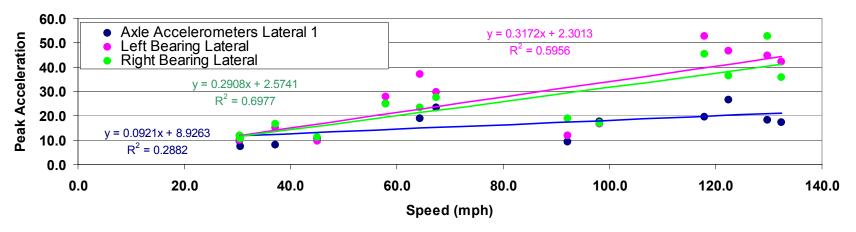
FEA: 1400 RPM Rotation

FEA: 1400 RPM Rotation Stress on Spoke (psi)

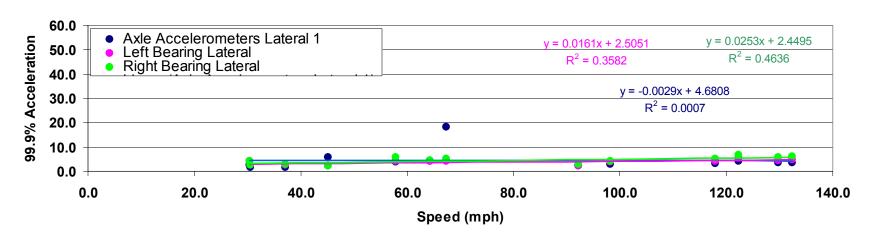
Conclusions

FEA Conclusions

- Predicts 206 Hz BOP Of Disc When The Hub Is Fixed
- Predicts A Hot Spot For Stress In BOP Mode At The General Location Of Observed Cracks
- Predicts Tensile Strain In Spokes Due To Temperature Rise In Friction Rings
- Predicts Low Strain In Spoke Due To Rotation

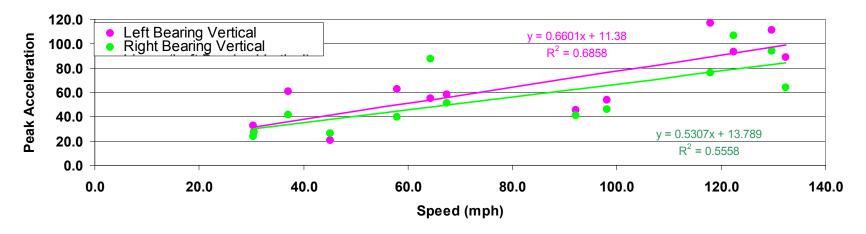

Appendix F. Accelerations

<u>Section</u>	<u>Page</u>
Axle Accelerations	F-2
Lateral Shocks	F-15
Vertical Shocks	F-18
Relationship of BOP Strain During Non-Braking Conditions to	
Acceleration Differences	F-33
Comparison of Response of WABTEC/SAB-WABCO and	
Knorr Brake Discs	F-49
Axle Acceleration Examples	F-53
Caliper Accelerations	F-66
Brake Mount Accelerations	F-79
Truck Accelerations	F-92
BOP Responses	F-105
Plots of Axle Vertical Accelerations Exceeding 100 G	F-110
Day 1–May 16, 2005	F-111
Day 2-May 17, 2005	F-117
Day 3–May 26, 2005	F-126
Day 4-May 27, 2005	F-143
Day 6-June 17, 2005	F-159
Day 7-June 18, 2005	F-197

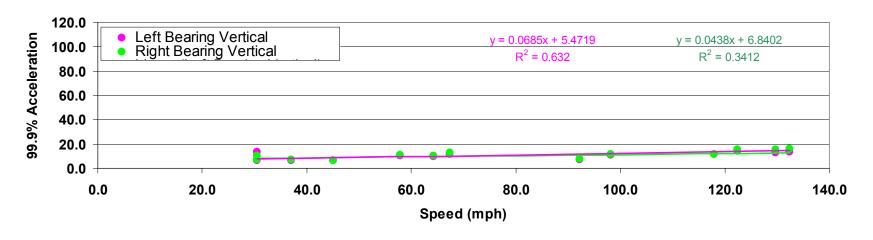

Axle Accelerations

Lateral Acceleration (Lead)

Day 3 Accelerations (Peaks)



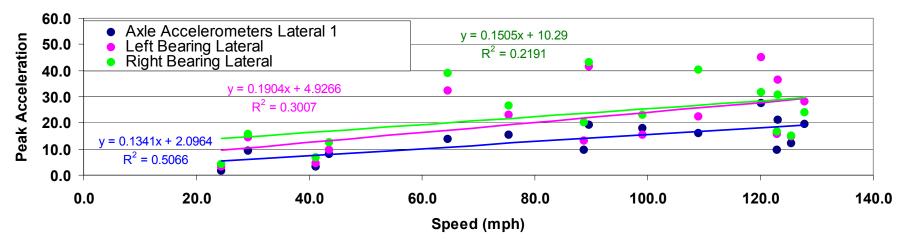
Day 3 Accelerations (99.9% Percentile)



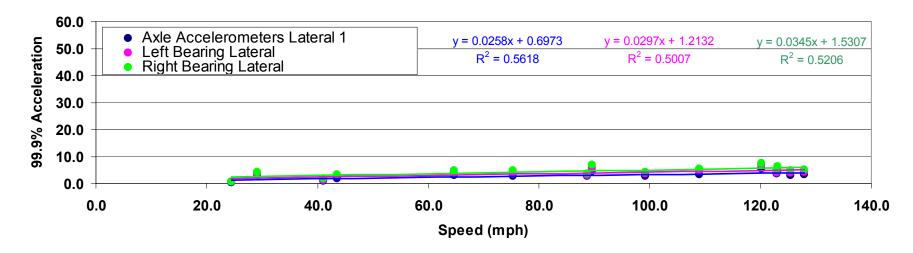
Vertical Acceleration (Lead)

Day 3 Accelerations (Peaks)

Day 3 Accelerations (99.9% Percentile)

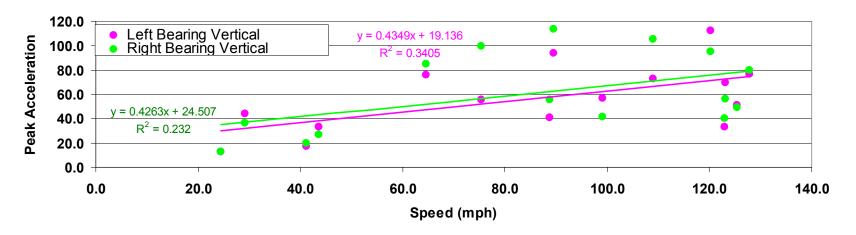


Conclusions-5/26/05

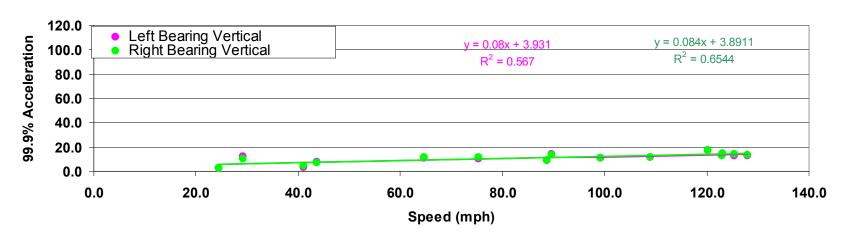

- The Car Tested With The Instrumented Axle In The Leading Position
- Accelerations Generally Increase With Speed
- Lateral Acceleration Measured On The Bearing Generally Higher Than On The Axle
- Axle Bearing System Peak Accelerations
 - Vertical Bearing–117 G's
 - Lateral Bearing–53 G's
 - Lateral Axle-26 G's

Lateral Acceleration (Trailing)

Day 4 Accelerations (Peaks)



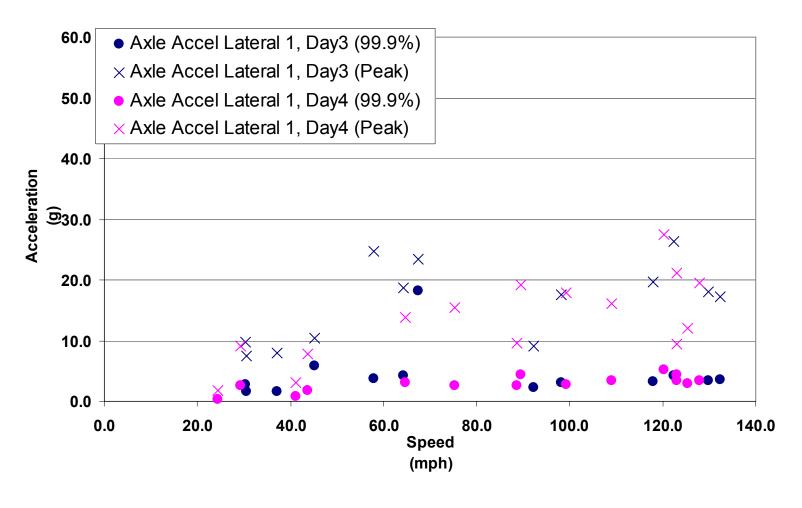
Day 4 Accelerations (99.9% Percentile)



Vertical Acceleration (Trailing)

Day 4 Accelerations (Peaks)

Day 4 Accelerations (99.9% Percentile)

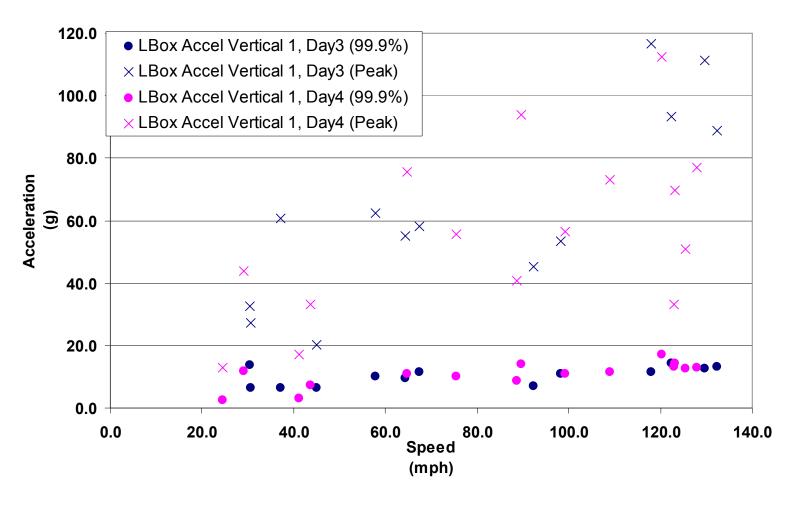


Conclusions-5/27/05

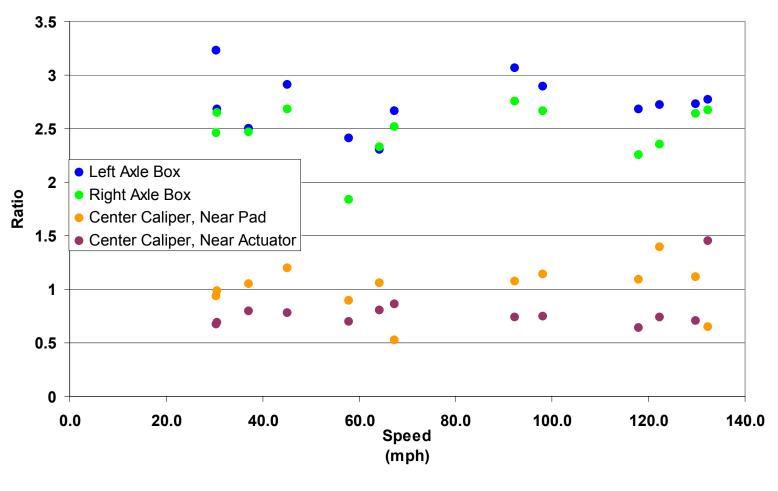
- The Car Tested With The Instrumented Axle In The Trailing Position
- Accelerations Generally Increase With Speed
- Lateral Acceleration Measured On The Bearing Generally Higher Than On The Axle
- Axle Bearing System Peak Accelerations
 - Vertical–113 G's
 - Lateral Bearing–45 G's
 - Lateral Axle–26 G's

Axle Lateral, Leading Versus Trailing

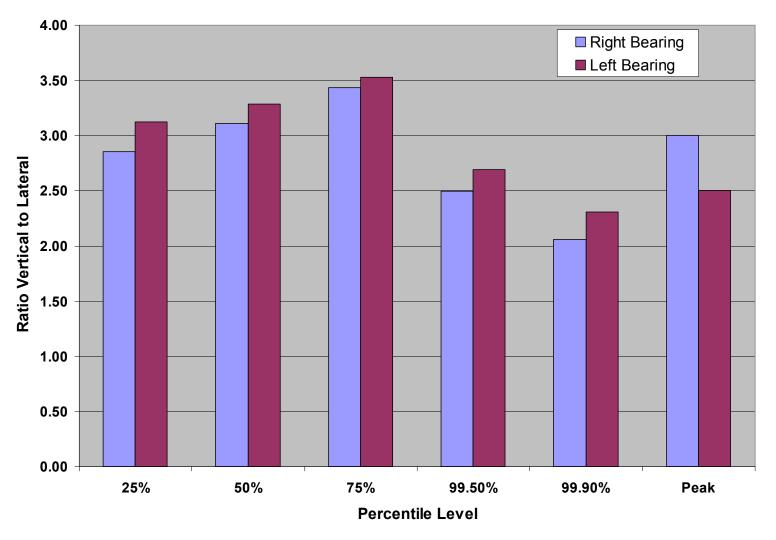
Leading vs Trailing Axle Configuration


LBox Lateral, Leading Versus Trailing

Leading vs Trailing Axle Configuration


LBox Vertical, Leading Versus Trailing

Leading vs Trailing Axle Configuration



Vertical to Lateral Ratio

Ratio of Vertical to Lateral Acceleration (99.9% Percentile)

Vertical to Lateral Ratio

F-13

Other Observations

- Change in Accelerations due to Axle Position as Leading or Trailing is Negligible
- Vertical Accelerations on Bearing Boxes
 2 to 3.5 times the Lateral Accelerations
- Vertical Accelerations on Calipers 0.5 to 1.5 times the Lateral Accelerations

Lateral Shocks

Table F.1 Lateral Accelerations Exceeding 30 G

		May 16, 2005		May 17, 2005						
Acceleration	Washing	ton, DC, to Bos	ston, MA	Boston, MA, to Washington, DC						
Range	Test	Axle in Trail Po	sition	Test /	Axle in Lead Po	osition				
	W/S-W Left	W/S-W Right	W/S-W Axle	W/S-W Left	W/S-W Right	W/S-W Axle				
$30 \text{ g} \le x < 40 \text{ g}$	0	2	0	0	4	0				
$40 \text{ g} \le x < 50 \text{ g}$	0	0	0	0	0	0				
50 g ≤ x < 60 g	0	0	0	0	0	0				
$60 \text{ g} \le x < 70 \text{ g}$	0	0	0	0	0	0				
$70 \text{ g} \le x < 80 \text{ g}$	0	0	0	0	0	0				
80 g ≤ x	0	0 0 0		0	0	0				
Total	0 2 0		0	4	0					
Maximum	0 37.34		0	0	39.1	0				
Minimum	0 37.05 0		0	0	32 07	0				

Assolutation	Washing	May 26, 2005		May 27, 2005			
Acceleration Range	_	ton, DC, to Bos Axle in Lead Po		Boston, MA, to Washington, DC Test Axle in Trail Position			
	W/S-W Left	W/S-W Right	W/S-W Axle	W/S-W Left	W/S-W Right	W/S-W Axle	
$30 \text{ g} \le x < 40 \text{ g}$	22 8		0	12	6	0	
$40 \text{ g} \le x < 50 \text{ g}$	6	3	0	6	4	0	
$50 \text{ g} \le x < 60 \text{ g}$	2	2	0	0	2	0	
$60 \text{ g} \le x < 70 \text{ g}$	0	0	0	1	2	0	
$70 \text{ g} \le x < 80 \text{ g}$	1	0	0	0	0	0	
80 g ≤ x	0	0	0	0	0	0	

Total	31	13	0	19	14	0
Maximum	75.33	52.65	0	62.46	38.56	0
Minimum	30.04	-52.45	0	-44.97	-63.74	0

Represents the number of acceleration events where the lateral acceleration on the axle boxes exceeded 30 G. The Right Box accelerometers were changed from the Silicon Design accelerometers to PCB accelerometers after Day 2.

Table F.1 Lateral Accelerations Exceeding 30 G

Acceleration Range		June 17, 2005 Washington, DC, to Boston, MA Test Axle in Lead Position									
	W/S-W Left	W/S-W Right	W/S-W Axle	Knorr Left	Knorr Right	Knorr Axle					
$30 \text{ g} \le x < 40 \text{ g}$	15	8	0	15	10	0					
$40 \text{ g} \le x < 50 \text{ g}$		1	0	3	0	0					
$50 \text{ g} \le x < 60 \text{ g}$	1	1	0	1	0	0					
$60 \text{ g} \le x < 70 \text{ g}$	0	0	0	0	0	0					
$70 \text{ g} \le x < 80 \text{ g}$	0	0	0	0	0	0					
80 g ≤ x	0	0 0 0 0 0									
Total	18	10	0	19	10	0					

Total	18	10	0	19	10	0
Maximum	58.53	38.91	0	44.56	38.92	0
Minimum	-38.29	-51.37	0	-58.38	30.16	0

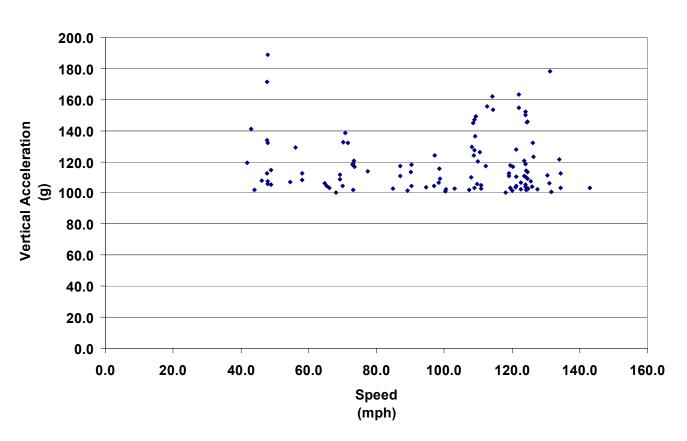
Acceleration Range		June 18, 2005 Boston, MA, to Washington, DC Test Axle in Lead Position									
	W/S-W Left	W/S-W Right	W/S-W Axle	Knorr Left	Knorr Right	Knorr Axle					
$30 \text{ g} \le x < 40 \text{ g}$	8	8	0	6	7	0					
$40 \text{ g} \le x < 50 \text{ g}$	6	1	0	0	1	0					
$50 \text{ g} \le x < 60 \text{ g}$	2	0	0	0	0	0					
$60 \text{ g} \le x < 70 \text{ g}$	0	0	0	0	0	0					
$70 \text{ g} \le x < 80 \text{ g}$	0	0 0 0 0 0									
80 g ≤ x	0	0	0	0	0	0					

Total	16	9	0	6	8	0
Maximum	52.98	42.96	0	38.63	41.3	0
Minimum	30.52	30.78	0	-30.95	30.36	0

Represents the number of acceleration events where the lateral acceleration on the axle boxes exceeded 30 G. The Right Box accelerometers were changed from the Silicon Design accelerometers to PCB accelerometers after Day 2.

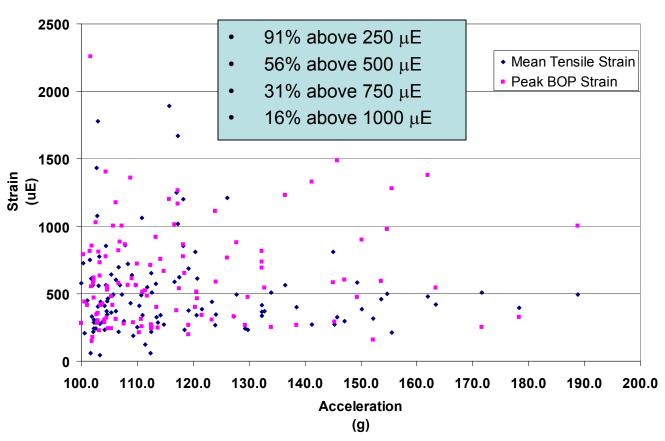
Vertical Shocks

Table F.2 Vertical Accelerations Exceeding 50 G

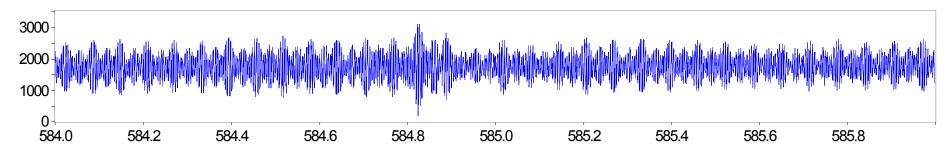

	May 16	6, 2005	May 17	7, 2005	May 26, 2005		May 27, 2005		
Acceleration	Washington, DC	, to Boston, MA	Boston, MA, to	Washington, DC	Washington, DC, to Boston, MA		Boston, MA, to Washington, DC		
Range	Test Axle in	Trail Position	Test Axle in	Lead Position	Test Axle in I	_ead Position	Test Axle in	Test Axle in Trail Position	
	W/S-W Left	W/S-W Right	W/S-W Left	W/S-W Right	W/S-W Left	W/S-W Right	W/S-W Left	W/S-W Right	
50 g ≤ x < 60 g	45	42	34	38	58	74	45	55	
60 g ≤ x < 70 g	13	23	16	20	29	39	19	31	
70 g ≤ x < 80 g	18	6	8	7	11	16	17	24	
80 g ≤ x < 90 g	6	3	9	5	6	14	7	10	
$90 \text{ g} \le x < 100 \text{ g}$	5	6	4	12	5	8	8	7	
100 g ≤ x	5	0	8	0	6	10	5	10	
Total	92	80	79	82	115	161	101	137	
Maximum	126.05	99.08	117.52	99.18	155.58	145	132.28	132.25	
Minimum	-61.05	-52.97	-51.3	-69.67	-69.4	-52.02	-57.3	-69.54	

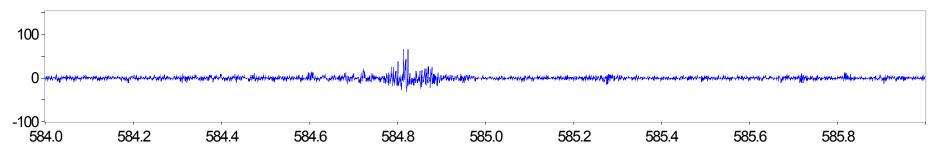
		June 17	7 2005		June 18, 2005				
Acceleration		Washington, DC	•		Boston, MA, to Washington, DC				
Range		Test Axle in L					_ead Position		
Ü	W/S-W Left	W/S-W Right	Knorr Left	Knorr Right	W/S-W Left	W/S-W Right	Knorr Left	Knorr Right	
50 g ≤ x < 60 g	35	50	36	37	36	30	37	32	
60 g ≤ x < 70 g	25	26	24	18	18	21	20	23	
70 g ≤ x < 80 g	17	13	10	23	6	8	12	13	
80 g ≤ x < 90 g	7	9	5	7	8	10	6	6	
90 g ≤ x < 100 g	3	5	10	2	2	6	1	2	
100 g ≤ x	9	7	13	8	8	6	11	6	
Total	96	110	98	95	78	81	87	82	
Maximum	188.85	150.23	171.58	152.25	154.69	132.34	178.27	123.41	
Minimum	50.02	50.35	50.03	50.03	50.31	50.07	50.61	50.13	

Represents the number of acceleration events where the vertical acceleration on the axle boxes exceeded 50 G. The Right Box accelerometers were changed from the Silicon Design accelerometers to PCB accelerometers after Day 2.

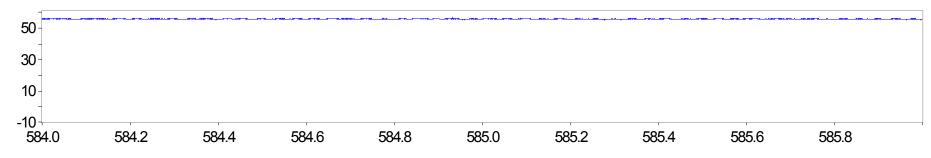

Vertical Accelerations Exceeding 100 G Versus Speed

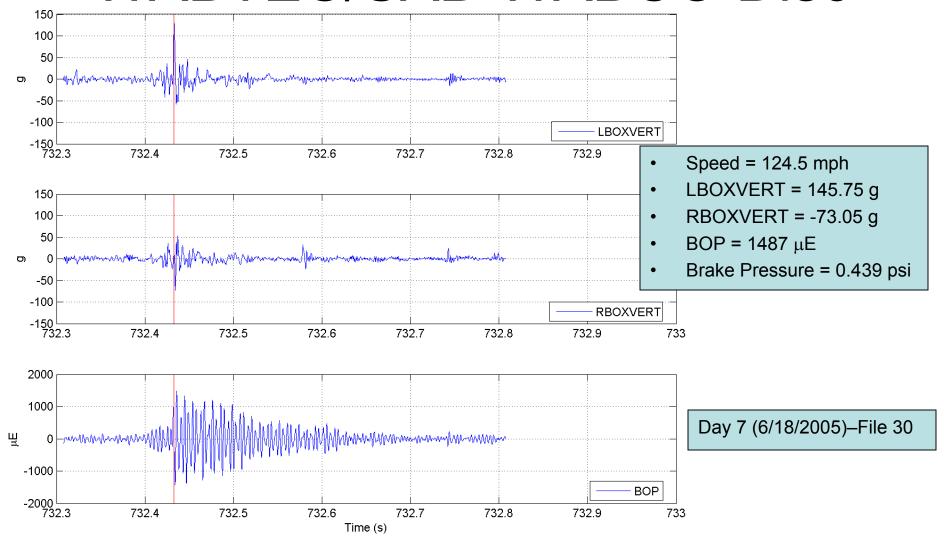
100+ G Vertical Acceleration Events

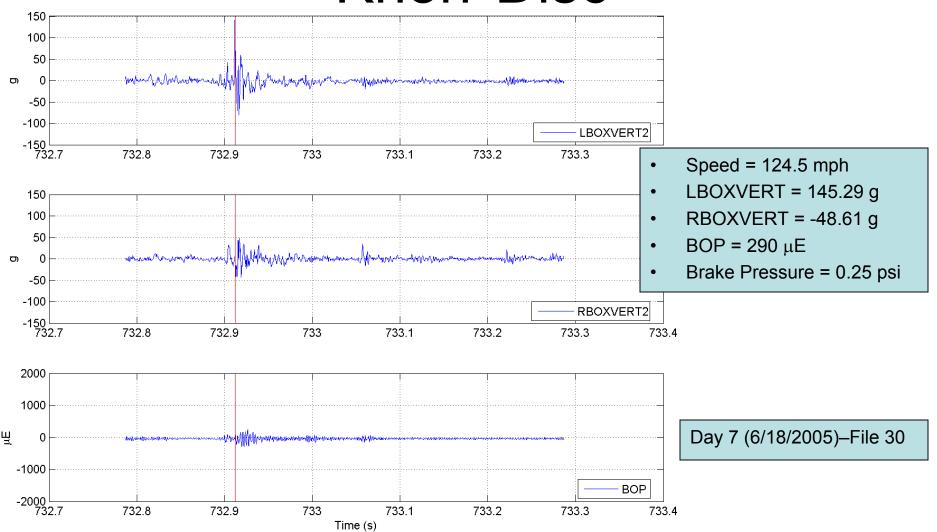

BOP Versus Vertical Acceleration



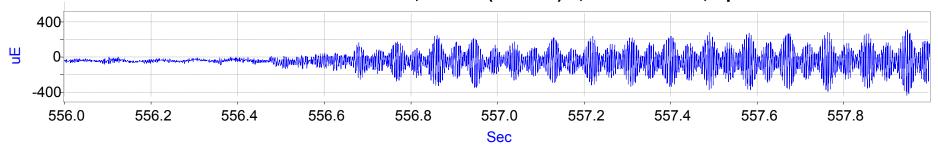
Vertical Impulse During Sustained Oscillations



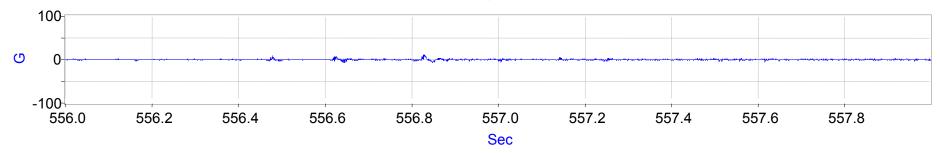

AB3.1.55_LBOXVERT1


AB3.1.13_CYLPRESS1

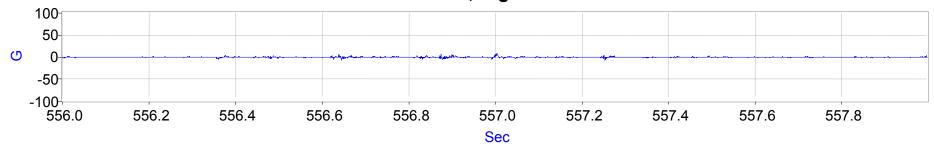
WABTEC/SAB-WABCO Disc



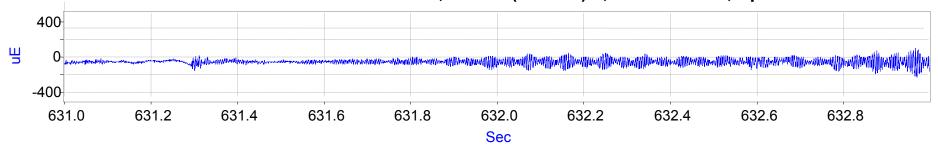
Knorr Disc



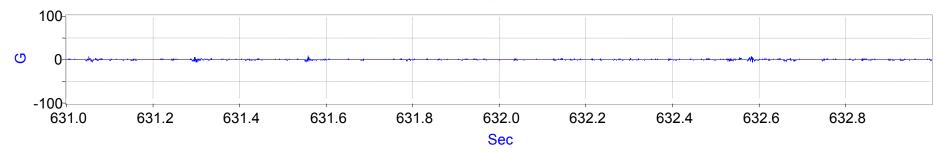
Day 6-File 25


WABTEC/SAB-WABCO Disc, BOP = (R1 - R2)/2, Center Rotor, Spoke 6

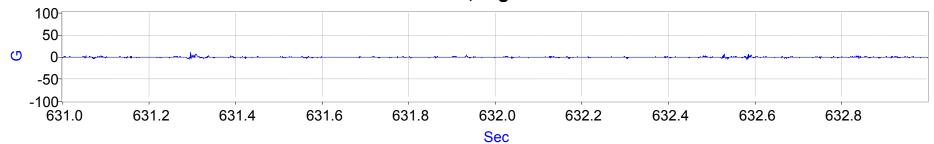
WABTEC/SAB-WABCO Disc, Left Box Vertical Acceleration



WABTEC/SAB-WABCO Disc, Right Box Vertical Acceleration



Day 6-File 25


WABTEC/SAB-WABCO Disc, BOP = (R1 - R2)/2, Center Rotor, Spoke 6

WABTEC/SAB-WABCO Disc, Left Box Vertical Acceleration

WABTEC/SAB-WABCO Disc, Right Box Vertical Acceleration

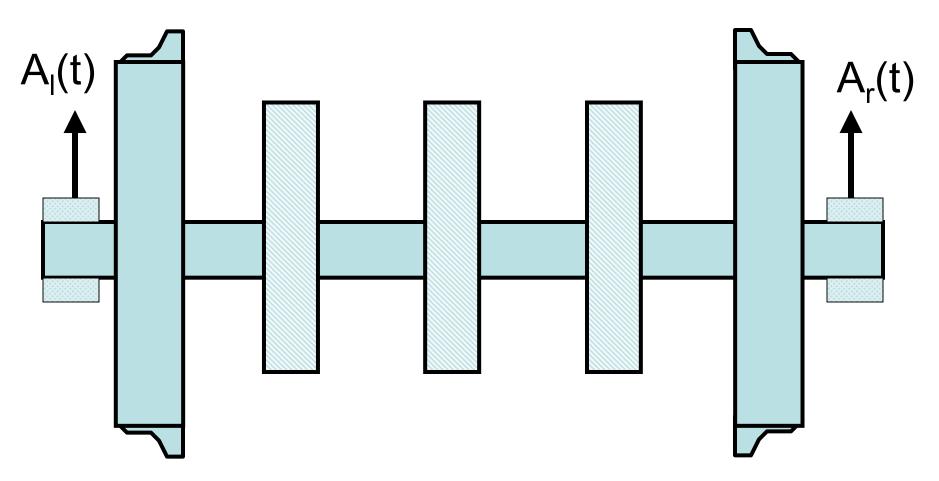
	Day	Location					0:4-			Moon Tonsile	Peak BOP -	
Num		Feet	Dir.	MP	Physical Track Feature	Axle	Side of Car	-	Brake Cylinder Pressure (PSI)	Mean Tensile Stress - Center Disc (μΕ)		Acceleration (G)
1	5/17	12916	E of	AB225	?	1	Left	119.5	0.6	46	734	103.4
2	5/27	963	NE of	AB224	Plains Interlocking	1	Left	120.1	1.2	61	2258	101.6
3	5/26	2210	NE of	AB223	Forest Interlocking	1	Left	120.3	0.8	589	1015	116.6
4	5/27	1147	SW of	AB224	rorest interlocking		Left	119.2	1.2	58	712	112.4
5	6/18	1952	SW of	AB220	Read Interlocking	2	Right	126.3	0.4	441	305	123.4
6	6/18	2137	SW of	AB220	Read Interlocking		Right	126.2	0.4	413	737	132.3
7	6/18	69	N of	AB219	Switch		Right	125.9	0.3	411	286	104.2
8	5/26	721	SW of	AB219		1	Right	108.5	0.8	811	585	145.0
9	6/18	2101	NE of	AB218	Transfer Interlocking	2	Left	131.2	0.3	396	326	178.3
10	6/18	2293	NE of	AB218	Transfer interlocking	1	Left	131.1	0.4	372	1175	106.2
11	5/26	540	SW of	AB170	?	1	Right	143.0	24.1	777	229	103.3
12	6/18	1591	NE of	MN71	Undergrade Bridge		Left	43.9	0.3	562	180	102.0
13	6/18	1415	NE of	MN66			Left	77.4	0.3	289	249	113.7
14	5/17	820	W of		CP 261		Left	54.6	0.9	562	883	106.9
15	6/17	1147	SW of	MN56			Right	47.8	0.4	508	254	112.6
16	6/17	1211	SW of	MN56			Left	47.8	0.4	508	254	134.0
17	6/17	1211	SW of	MN56			Left	47.8	0.4	508	254	171.6
18		1276	SW of	MN56	Undergrade Bridge		Left	47.9	0.4	496	1003	188.9
19	6/17	1276	SW of	MN56	Ondergrade bridge		Right	47.9	0.4	496	1003	105.7
20	6/17	1276	SW of	MN56			Right	47.9	0.4	496	1003	107.3
21	5/26	1315	SW of	MN56			Right	43.0	0.6	271	1327	141.2
22	6/18	1448	SW of	MN56		2	Right	41.9	0.4	377	268	119.2

	Day		Location	1			Cide			Mean Tensile	Peak BOP -	
Num		Feet	Dir.	MP	Physical Track Feature	Axle	Side of Car		Brake Cylinder Pressure (PSI)	Stroce - Contor		Acceleration (G)
23	5/27	1139	NE of	MN41	CP 241	1	Right	48.0	1.4	334	814	132.3
24	6/18	1510	E of	MN33	CP 234	1	Right	48.9	0.3	270	669	114.8
25	6/17	1872	NE of	MN32		2	Left	68.1	14.7	577	284	100.0
26	6/18	2039	NE of	MN32	Grade Crossing	2	Left	56.2	0.4	244	265	129.3
27	6/17	2164	NE of	MN32		2	Right	64.7	15.1	603	313	106.2
28	5/26	249	NE of	MN29		1	Right	69.3	0.8	549	486	111.8
29	5/26	570	SW of	MN29		1	Left	70.1	0.8	565	1405	104.4
30	5/27	348	NE of	MN29		1	Left	71.5	1.3	366	690	132.3
31	6/17	324	SW of	MN29		2	Right	73.2	0.5	687	196	119.2
32	6/17	431	SW of	MN29	CP 229	1	Left	73.2	0.5	611	554	101.8
33	6/17	431	SW of	MN29	OF 229	1	Right	73.3	0.5	611	463	120.7
34	6/18	166	NE of	MN29		1	Right	65.3	0.4	373	320	104.5
35	6/18	166	NE of	MN29		2	Right	66.1	0.4	404	354	103.0
36	6/18	428	SW of	MN29		1	Left	70.2	0.4	369	546	132.7
37	6/18	530	SW of	MN29		2	Left	70.7	0.4	402	269	138.4
38	5/27	2154	NE of	MN23	CP 223		Right	69.3	1.4	429	1359	108.8
39	6/17	2529	SW of	AN10	Hunter Interlocking	2	Right	73.5	0.5	1250	378	117.0
40	6/17	2634	SW of	AN10	nunter interlocking	1	Right	73.0	0.5	1203	866	118.2
41	5/17	420	SW of	AN12		1	Left	108.0	0.9	250	720	110.0
42	5/26	1222	SW of	AN12	Lane Interlocking	1	Right	107.3	0.8	610	854	101.9
43	6/18	450	SW of	AN12	Lane interlocking	1	Left	108.9	0.4	294	601	147.1
44	6/18	450	SW of	AN12		2	Left	108.9	0.4	329	333	127.3

			Location	1			Side			Mean Tensile	Peak BOP -	
Num	Day	Feet	Dir.	MP	Physical Track Feature	Axle			Brake Cylinder Pressure (PSI)	Stress - Center		Acceleration (G)
45	5/26	2174	NE of	AN20		1	Left	112.6	0.8	213	1279	155.6
46	5/27	1979	SW of	AN19		1	Right	90.1	1.5	325	400	113.5
47	6/17	1371	NE of	AN20	Union Interlocking	2	Left	111.0	0.5	467	244	104.8
48	6/17	2194	NE of	AN20	Official interlocking	2	Left	114.4	0.4	459	595	153.7
49	6/17	2362	NE of	AN20		1	Left	114.1	0.5	477	1379	161.9
50	6/18	1083	NE of	AN20		2	Left	103.0	0.4	1078	283	102.9
51	5/16	1734	E of	AN26		1	Left	100.4	1.6	451	416	101.0
52	5/26	1367	E of	AN26		1	Left	97.1	0.8	345	589	124.1
53	5/26	1367	E of	AN26	Lincoln Interlocking	1	Right	97.1	0.8	344	531	104.6
54	6/17	1316	E of	AN26		1	Left	109.2	0.5	563	1230	136.5
55	6/17	1476	E of	AN26		2		109.2	0.5	584	475	149.3
56	6/17	1796	E of	AN26	01 1 0 1 1	1	Right	108.9	0.5	557	812	103.2
57	5/16	872	SW of		Signal Bridge	1	Left	124.3	1.6	330	149	101.9
58	5/26	45		AN32.5		1	Left	124.6	0.8	244	599	102.2
59	5/27	300		AN32.5	County Interlocking	1	Right	124.2	1.6	339	756	114.2
60	6/17	35		AN32.5		7	Left	121.2	0.5	446	555	104.6
61 62	5/17	166 392		AN32.5 AN32.5			Left Left	121.1 119.6	0.5 0.9	441 623	414 538	103.5 117.5
63	5/27	431		AN32.5		1		123.6	1.6	343	516	117.5
64	5/27	431		AN32.5	?	1	Right Right	123.6	1.6	343	516	120.7
65	6/17	696	NE of	AN32.5		2	Right	119.2	28.3	487	313	110.8
66	5/26	2350	NE of	AN42		1	Left	130.5	0.8	125	524	111.4
67	5/27	1641	SW of	AN41		1	Right	131.7	1.6	208	441	100.6
68		1939	SW of	AN41	Midway Interlocking	1	Left	134.3	0.5	277	631	103.3
69		1939	SW of	AN41		2	Left	134.4	0.5	218	272	112.5

		Location					Side			Mean Tensile	Peak BOP -	
Num	Day	Feet	Dir.	MP	Physical Track Feature	Axle of Car	of		Brake Cylinder Pressure (PSI)	Stroce - Contor	Center Disc (μΕ)	Acceleration (G)
70	5/16	984	NE of	AN55.5		1	Left	110.6	0.5	1208	766	126.1
71	5/26	937	NE of	AN55.5		1	Right	108.2	0.8	230	475	129.7
72	5/27	173	N of	AN55.5	Ham Interlocking	1	Left	108.8	1.7	268	1113	124.0
73	6/18	154	W of	AN55.5	riam interiocking	1	Right	98.7	55.7	1894	1202	115.8
74	6/18	694	NE of	AN55.5		1	Left	112.3	56.0	1668	1168	117.3
75	6/18	694	NE of	AN55.5		2	Left	111.0	56.0	1779	303	103.0
76	5/16	1726	SW of	AN77		1	Left	100.6	0.5	304	468	102.2
77	5/17	2512	SW of	AN77		1	Left	98.8	0.9	635	614	109.1
78	5/27	2336	SW of	AN77		1	Right	98.3	1.8	698	823	106.7
79	6/17	1327	SW of	AN77		2	Right	124.1	0.6	317	158	152.3
80	6/17	1509	SW of		Holmes Interlocking	1	Right	124.0	0.6	385	902	150.2
81	6/18	2613	SW of	AN77		1	Left	122.1	0.4	501	978	154.7
82	6/18	2613	SW of	AN77		2	Left	122.0	0.4	422	544	163.4
83	6/18	2143	NE of	AN78		2	Right	121.2	0.4	412	212	110.3
84	6/18	2320	NE of	AN78		1	Right	121.3	0.4	494	879	127.8
85	6/17	486			N. Phil Interlocking	2	Left	58.1	0.5	653	244	112.5
86	6/17	570		AN85.5	14. 1 mil menocking	1	Left	58.0	0.5	719	563	108.4
87	5/16	1676	NE of	AP4	Phil Interlocking	1	Left	94.7	11.8	291	427	103.8
88	6/17	2347	NE of	AP4		2	Left	84.9	44.7	1435	344	102.7
89	6/17	147	NE of	AP16.8	Hook Interlocking	2	Left	109.9	0.4	810	399	120.3
90	5/27	2159	SW of	AP20	Holly Interlocking	1	Right	109.7	2.7	491	413	105.6
91	6/18	1801	SW of	AP20	riony interiodicing	2	Right	125.7	0.4	295	275	107.6
92	6/17	1352	E of	AP30	Ragan Interlocking	2	Left	124.1	0.5	361	242	105.3
93	6/18	1326	E of	AP30	ragarrineriooning	1	Right	118.1	0.4	728	792	100.4
94	5/26	2362	E of	AP39	Davis Interlocking	1	Right	127.6	1.0	285	620	102.3
95	6/17	2577	W of	AP38	Davis interlocking	2	Right	133.9	0.5	385	341	121.6

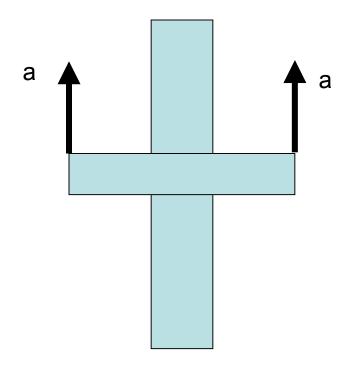
		Location					Side			Mean Tensile	Peak BOP -	
Num	Day	Feet	Dir.	MP	Physical Track Feature	Axle		Speed	Brake Cylinder Pressure (PSI)	Strees - Center		Acceleration (G)
96	5/17	1009	W of	AP60		1	Left	89.1	0.7	751	818	101.5
97	5/27	906	W of	AP60		1	Left	90.4	2.9	855	776	104.5
98	5/27	906	W of	AP60	Grace Interlocking	1	Right	90.4	2.9	855	776	118.2
99	6/18	1180	W of	AP60		2	Left	87.0	0.4	1064	258	110.9
100	6/18	1308	W of	AP60		1	Left	87.0	0.4	1018	1263	117.2
101	5/17	625	NE of	AP63	Oak Interlocking	1	Left	124.2	0.7	564	564	109.8
102	6/17	1038	NE of	AP63	Oak interlocking	2	Right	124.7	0.5	187	287	109.4
103	5/26	2192	SW of	AP75			Right		2.2	217	580	102.2
104	5/26	2192	SW of	AP75			Right		2.2	217	580	106.7
105	6/17	2256	SW of	AP75	Wood Interlocking	1	Right	124.7	0.4	575	920	113.3
106	6/18	1265	SW of	AP75		1	Left	124.5	0.4	328	1487	145.8
107		1448	SW of	AP75		2	Left	124.4	0.4	273	290	145.3
108	5/17	621	NW of	AP94	Biddle Interlocking	1	Left	48.9	0.7	644	479	105.3
109	6/18	709	NW of	AP94	Diddle Interlocking	1	Left	46.1	4.7	861	863	107.8
110	6/17	2294	S of	AP102	2	1	Left	124.0	0.5	230	651	118.5
111	6/17	2477	S of	AP102	ſ	2	Left	123.9	0.5	231	307	104.2
112	6/17	2476	S of	AP112	Grove Interlocking	1	Left	124.7	0.5	240	1028	102.7

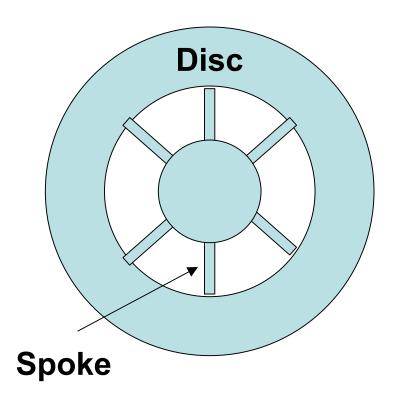

Vertical Acceleration Events

- For any given sensor location, vertical acceleration exceeds 100 G on the axle boxes approximately 5–13 times per day
- The events where acceleration exceeds 100 G can be grouped into approximately 48 instances for the entire Northeast Corridor for all 6 runs between Boston and DC
- The correlation between accelerations above 100 G and speed is small
- Accelerations above 100 G were observed at speeds greater than 40 mph
- The number of high acceleration events remains similar each day and on each axle
- The Silicon Design accelerometers used on the right box on Days 1 and 2 produced questionable results
- Vertical acceleration events sometimes cause a brake disc oscillation of short duration regardless of whether brakes are applied
- Vertical acceleration events are usually not associated with sustained brake disc oscillations that occur during braking
- Vertical acceleration events during sustained oscillation can increase the severity of the BOP for a short duration

Relationship of BOP Strain During Non-Braking Conditions to Acceleration Differences

The Problem

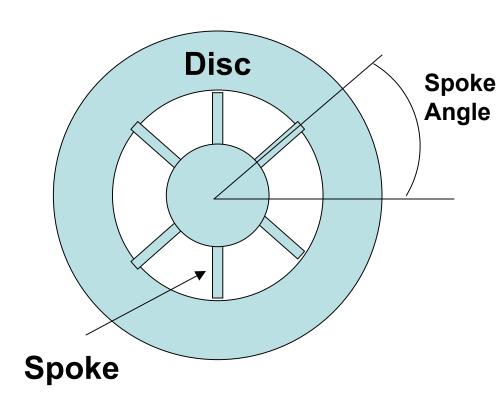

- During Non-Braking Conditions, The WABTEC/SAB-WABCO Disc Responds To Track Input From The Right Rail Or The Left Rail
- The Response Mode Is An Asymmetric Out-Of-Plane Bending Of The Spokes
- What Are The Characteristics Of This Response?


Acceleration Difference = $A_{l}(t) - A_{r}(t)$

Model Bump Acceleration

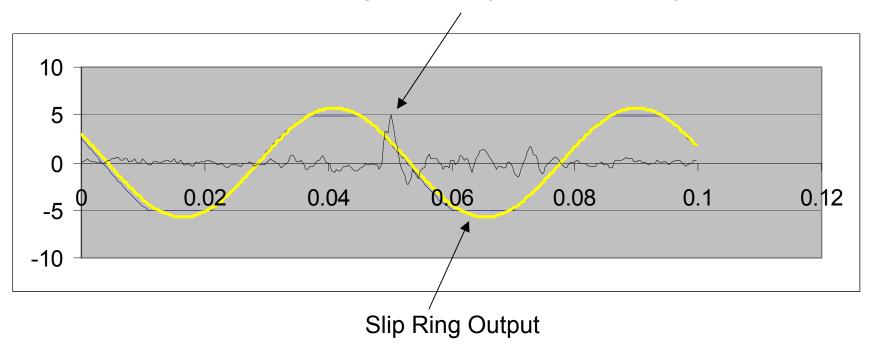
Motion

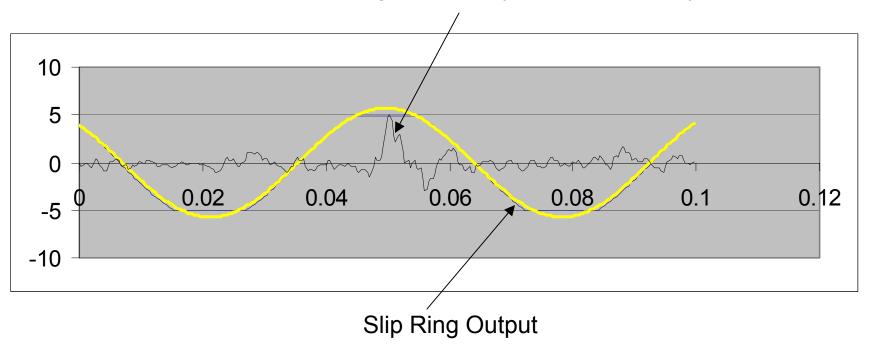
Equal Accelerations
In Same Direction

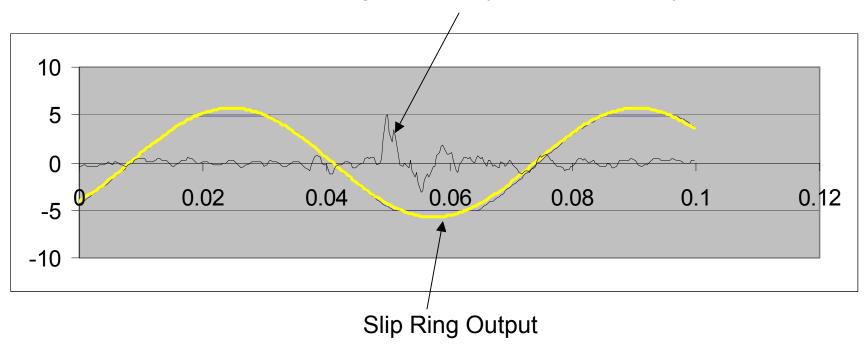

Model for Bump Acceleration

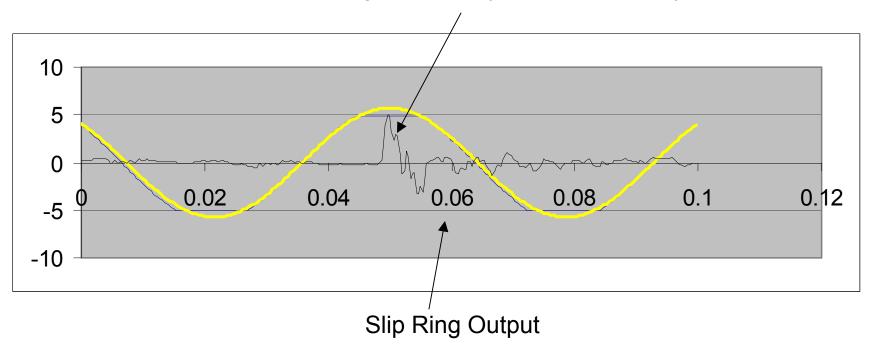
- This Mode Of Motion Does Not Excite An Out-Of-Plane Response Of The Spokes
- Since The Major Events Of High Axle Box Acceleration Are Predominantly A Single Side Event, The Value Of The Bump Acceleration Is Approximately Equal To The Acceleration Difference

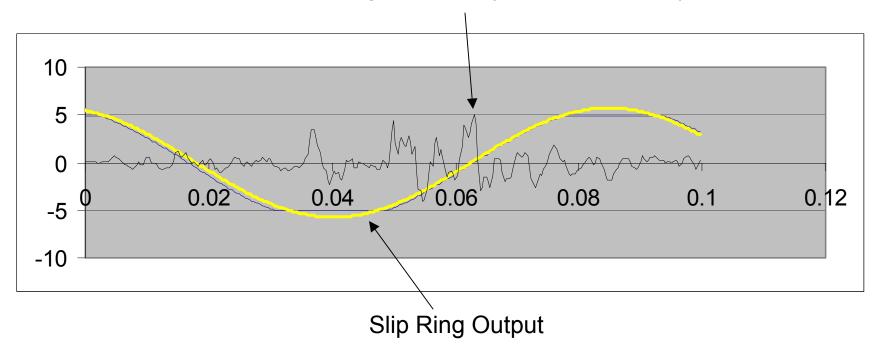
Model for Acceleration Difference

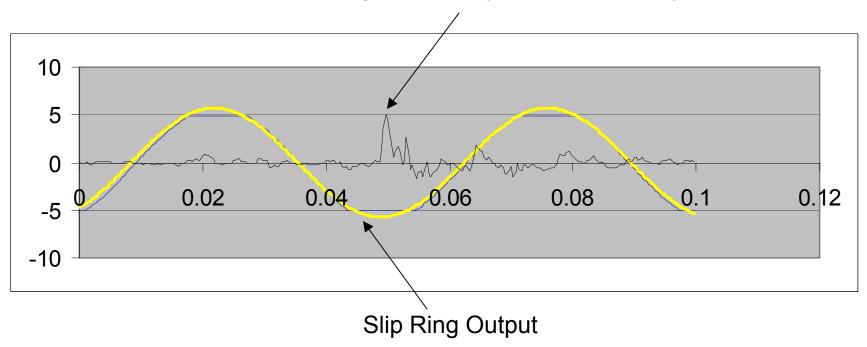


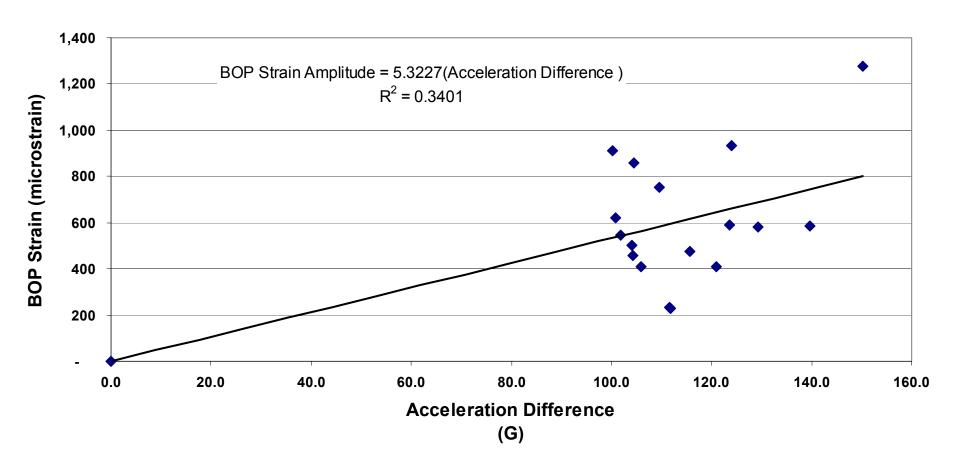

Equal and Opposite Accelerations

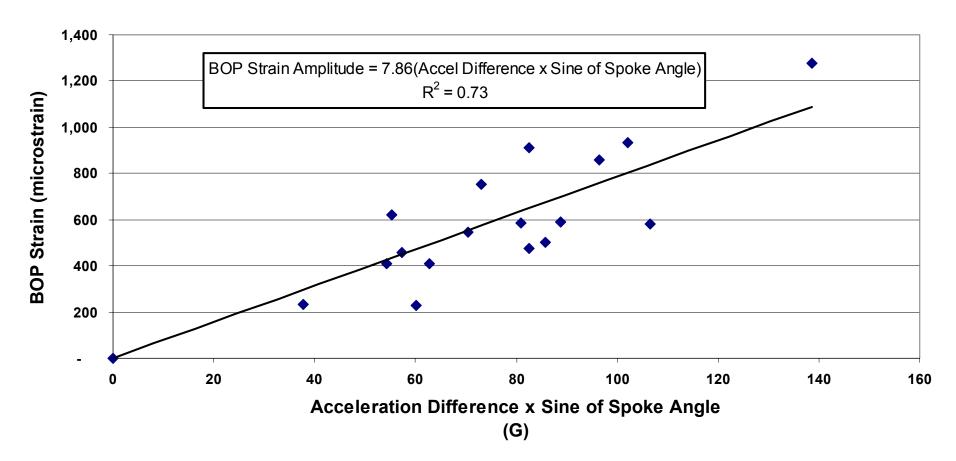



Approach


- Selected Events From May 26 Where Right Acceleration Levels Were Above 100 G's
- Observed BOP Strains Resulting From These Events
- Analyzed The Tilt Acceleration And Spoke 6 BOP Levels
- Plotted Tilt Acceleration Times The Sine Of Spoke 6 Position Angle Versus The Peak BOP Acceleration That Resulted From This Acceleration







BOP Strains Recorded on Spoke 6 of Center WABTEC/SAB-WABCO Disc - May 26, 2005

F-46

BOP Strains Recorded on Spoke 6 of Center WABTEC/SAB-WABCO Disc - May 26, 2005

F-47

Conclusions

- The BOP Response To Single Track Related Acceleration Pulses Are Proportional To The Level of Acceleration Differences And The Sine Of The Spoke Angular Position
- Based On The Limited Sample

BOP = 7.5 Tilt Sin (Spoke Angle)

Comparison of Response of WABTEC/SAB-WABCO and Knorr Brake Discs

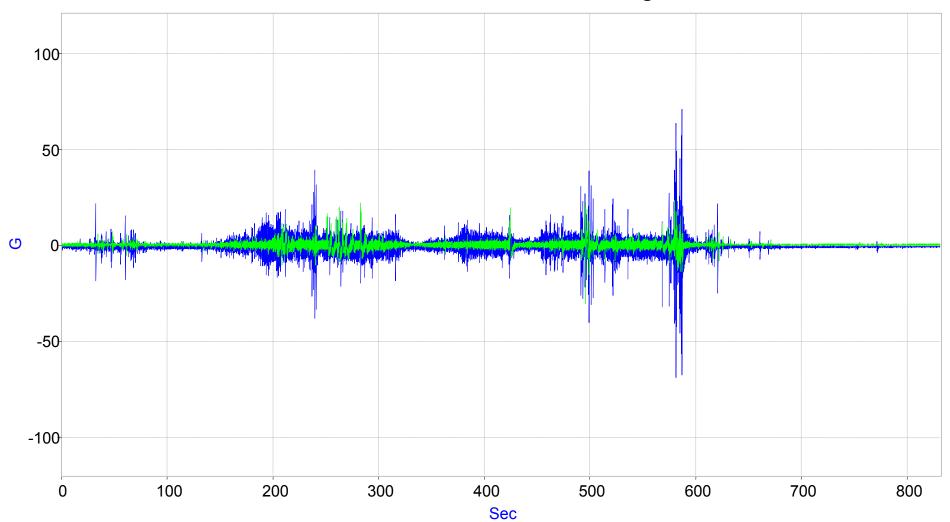
Table F.4. Statistics, Axle 1, 6/17/2005

Min	Max	Mean	Stdev	RMS	Channel
-213.8	170.8	-0.1	1.2	1.5	CH01_AXLELAT1-1
-15.8	11.6	0.0	0.7	0.5	CH02_02_TRFLLAT1
-18.4	24.0	0.0	0.7	0.6	CH03_TRFLVERT1
-11.8	18.8	0.0	0.6	0.3	CH04_TRFLLONG1
-9.1	8.5	0.0	0.5	0.2	CH05_BRMTLAT1
-9.0	10.4	0.0	0.6	0.3	CH06_BRMTVERT1
-12.9	15.6	0.0	0.5	0.3	CH09_BRMTLONG1
-53.4	48.6	0.0	1.1	1.3	CH10_CTRCALPLAT1
-31.1	31.3	0.2	0.9	0.8	CH11_CTRCALPVERT1
-17.1	16.6	0.1	0.5	0.3	CH12_CTRCALPLONG1
-42.6	58.5	0.0	0.8	0.6	CH54_LBOXLAT1
-73.5	188.9	0.0	1.2	1.5	CH55_LBOXVERT1
-51.4	39.3	0.0	0.8	0.6	CH56_RBOXLAT1
-58.7	150.2	0.0	1.3	1.6	CH57_RBOXVERT1

Table F.5. Statistics, Axle 1, 6/17/2005

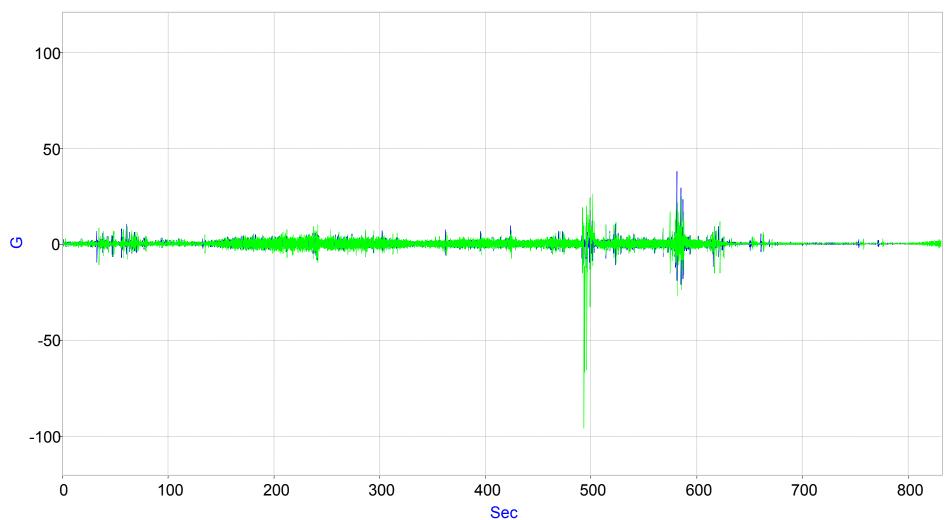
Min	Max	Mean	Stdev	RMS	Channel
-31.9	39.0	-0.1	0.8	0.6	CH16_AXLELAT2
-15.9	17.3	0.0	0.8	0.6	CH17_TRFLLAT2
-17.3	23.8	0.0	0.8	0.6	CH18_TRFLVERT2
-13.7	25.4	0.0	0.6	0.4	CH19_TRFLLONG2
-8.4	7.6	0.0	0.5	0.2	CH20_BRMTLAT2
-10.6	12.2	0.0	0.5	0.3	CH21_BRMTVERT2
-12.9	10.5	0.0	0.5	0.3	CH22_BRMTLONG2
-44.8	39.7	-0.1	0.6	0.3	CH23_CTRCALPLAT2
-31.5	26.2	0.0	0.7	0.5	CH24_CTRCALPVERT2
-14.9	12.8	0.2	0.5	0.3	CH25_CTRCALPLONG2
-124.4	122.3	0.0	1.4	2.1	CH58_LBOXLAT2
-64.4	171.6	0.0	1.3	1.6	CH59_LBOXVERT2
-86.9	155.4	0.0	1.3	1.7	CH60_RBOXLAT2
-69.2	152.3	0.0	1.2	1.5	CH61_RBOXVERT2

Locations for the Following Plots

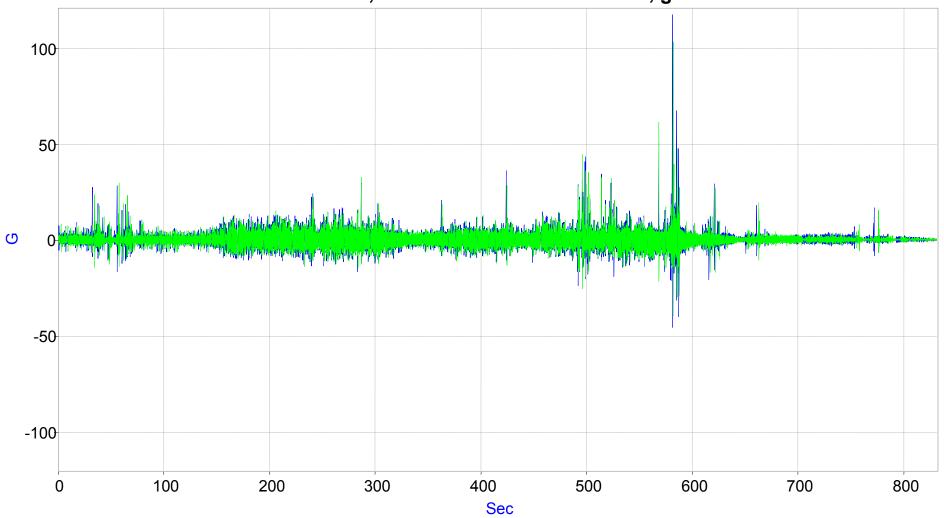

		Time of	Speed	Brake	
Day	File	File	(mph)	Pressure	ВОР
		(sec)		(psi)	
6/18	24	310	110	56	No
6/18	24	581	106	56	Yes
6/18	30	732	125	0	Yes

Axle Acceleration Examples

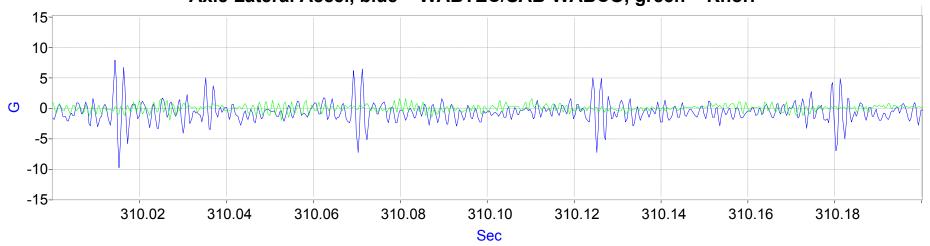
- June 18, 2005 File 24, t = 310–No BOP, Braking
- June 18, 2005 File 24, t = 581–BOP, Braking
- June 18, 2005 File 30, t=732–BOP, Response to Impact

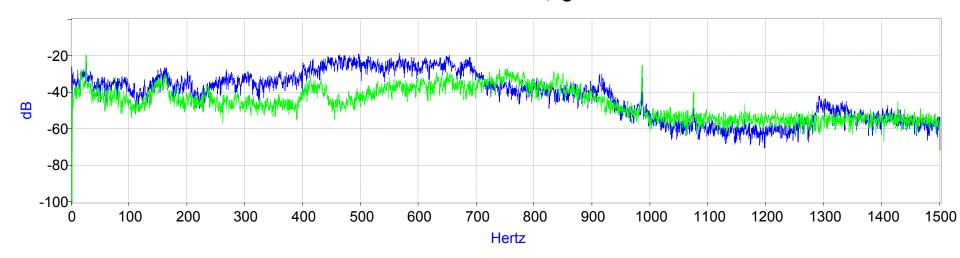

6/18/2005-File 24

Axle Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr


6/18/2005-File 24

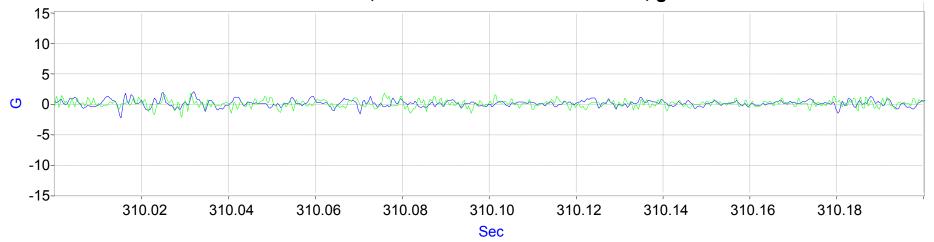
Left Box Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr


6/18/2005-File 24

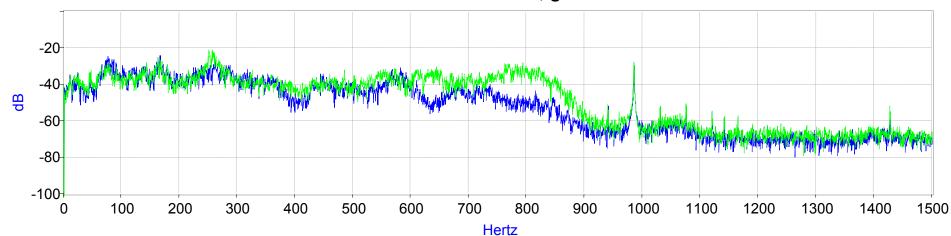


6/18/2005-File 24 (Brake, No SO)

Axle Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

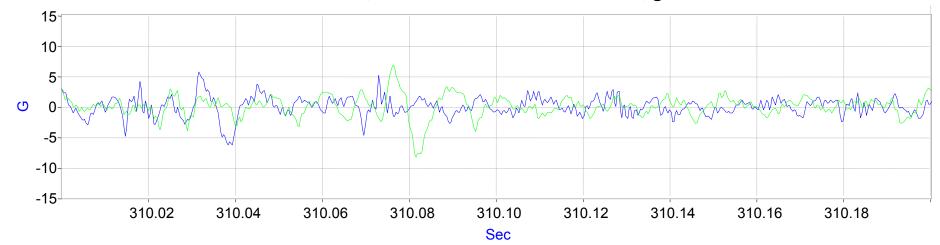


PSD of Axle Lateral Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

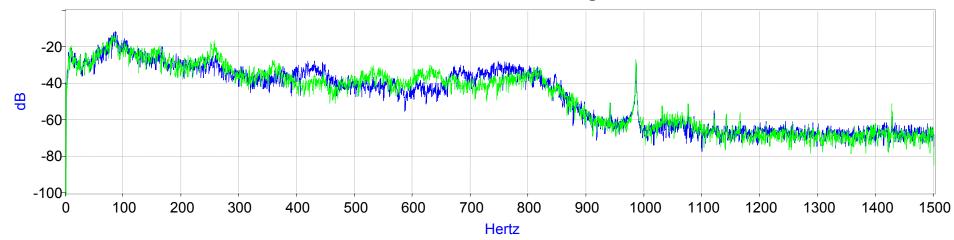


6/18/2005-File 24 (Brake, No SO)

Left Box Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

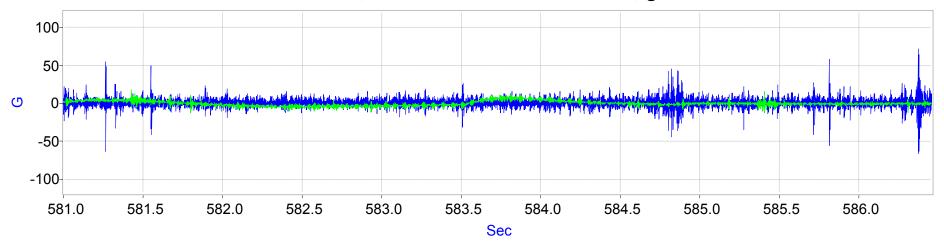


PSD of Left Box Lateral Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

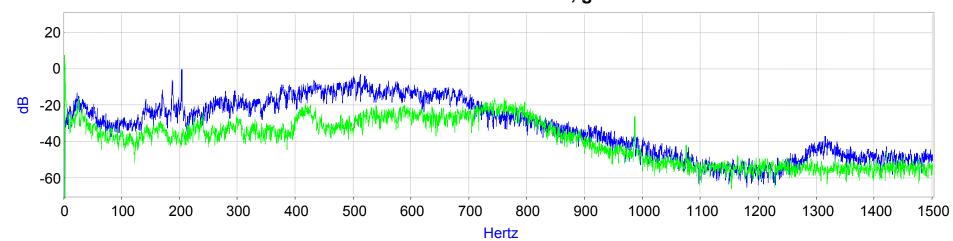


6/18/2005-File 24 (Brake, No SO)

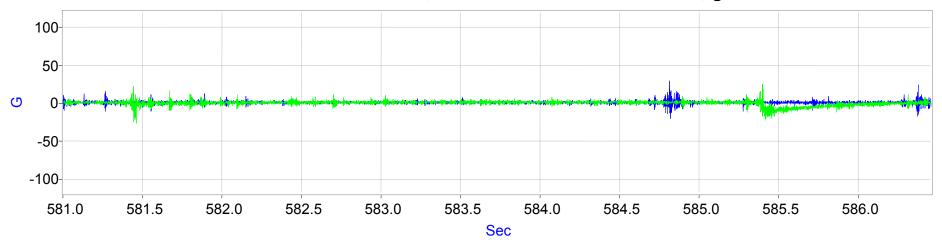
Left Box Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

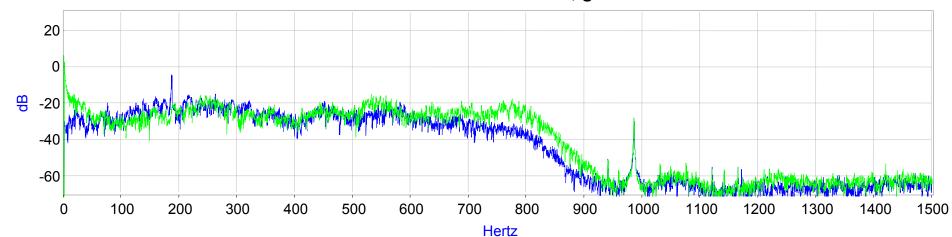


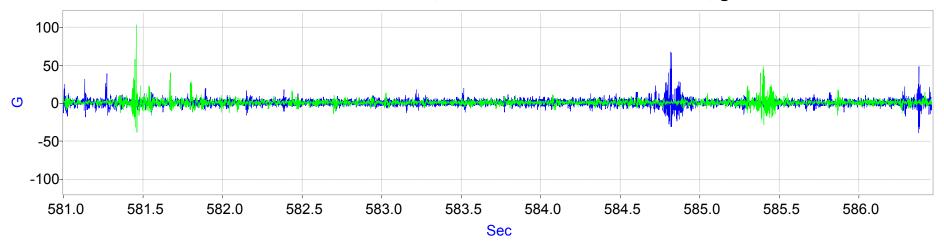
PSD of Left Box Vertical Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

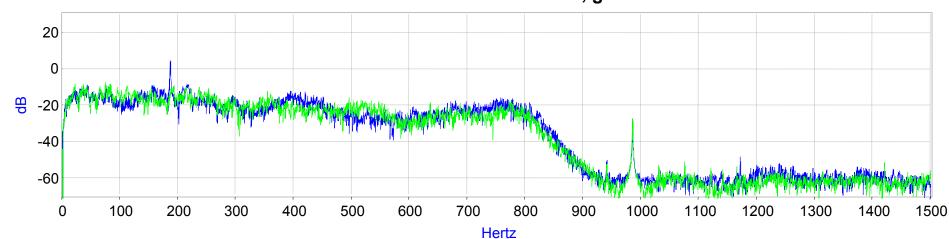


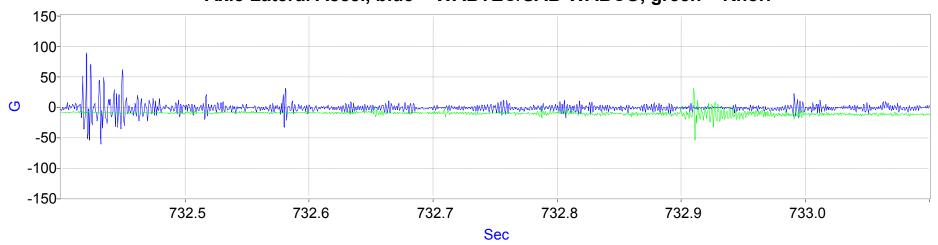
6/18/2005-File 24 (Brake, SO)

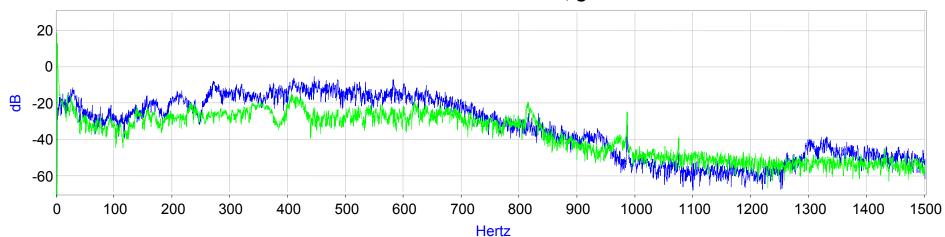

Axle Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

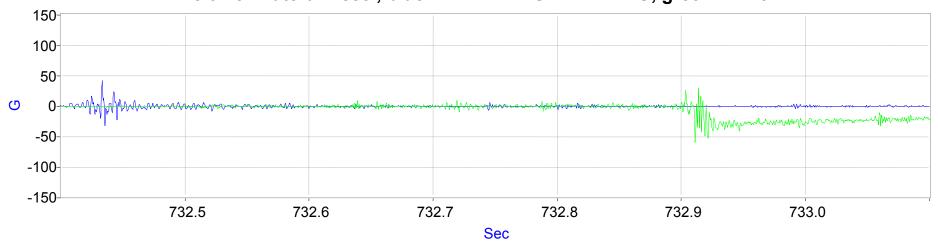

PSD of Axle Lateral Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

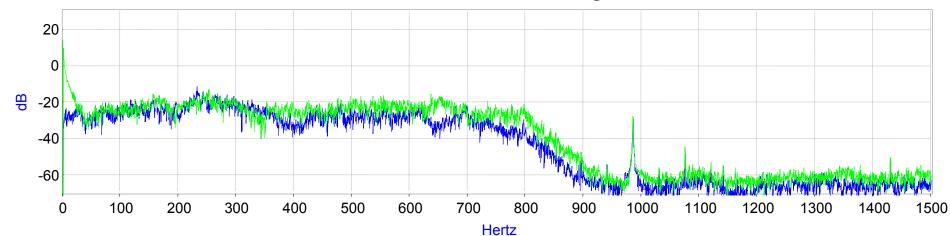

Left Box Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

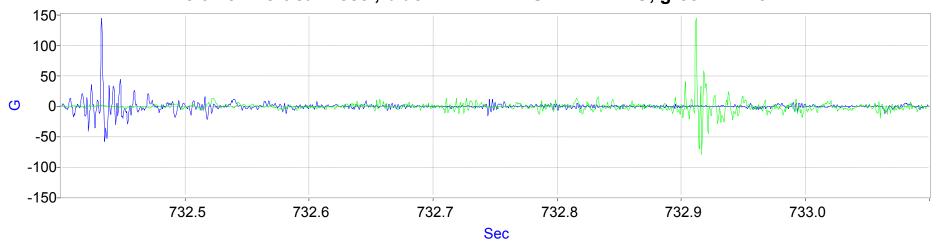

PSD of Left Box Lateral Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

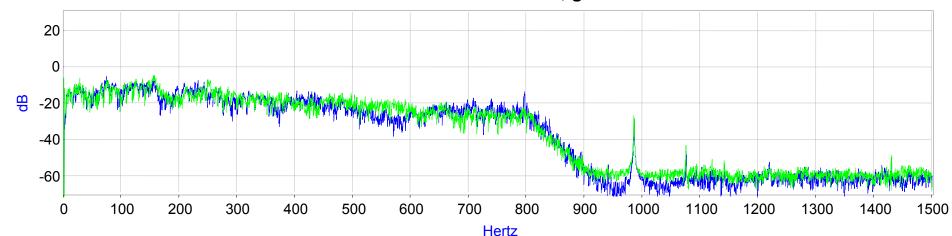

Left Box Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr


PSD of Left Box Vertical Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

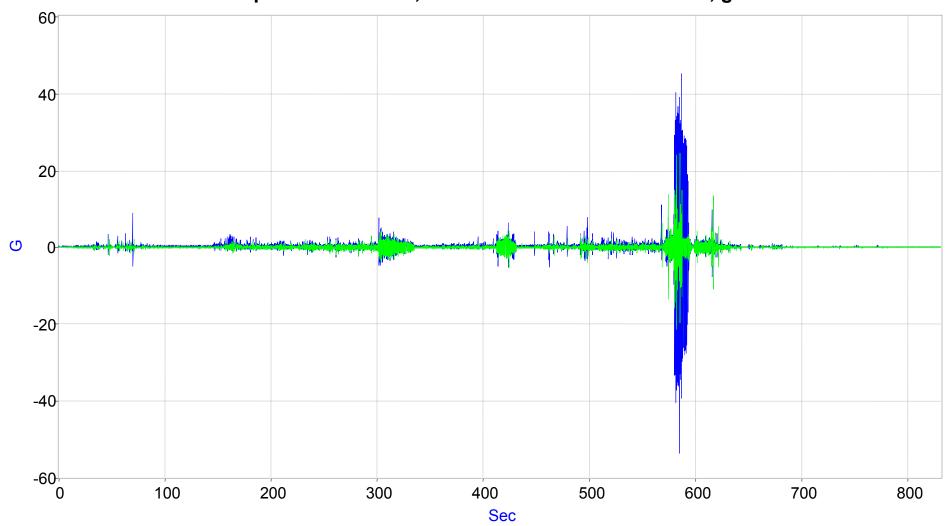

Axle Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

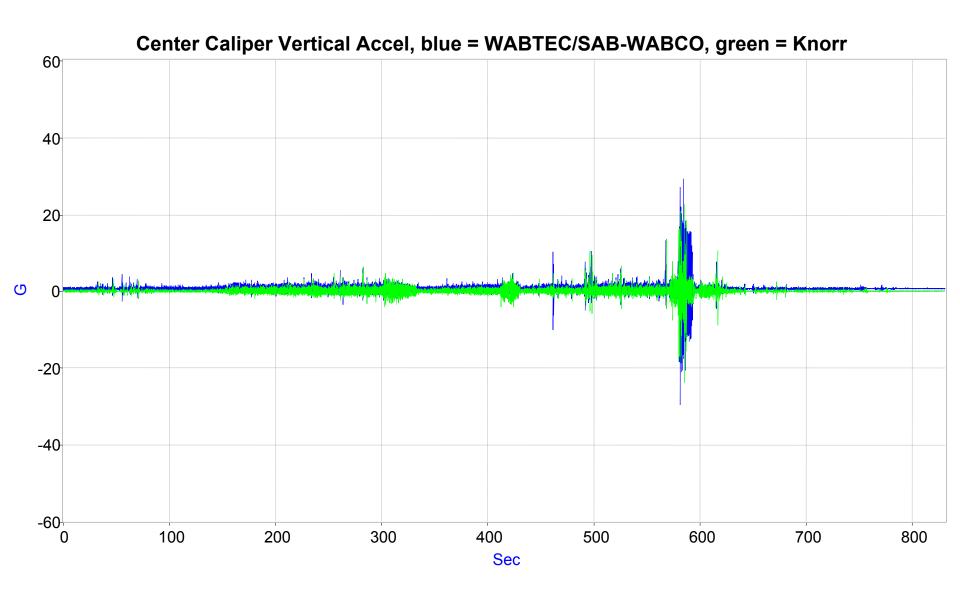

PSD of Axle Lateral Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

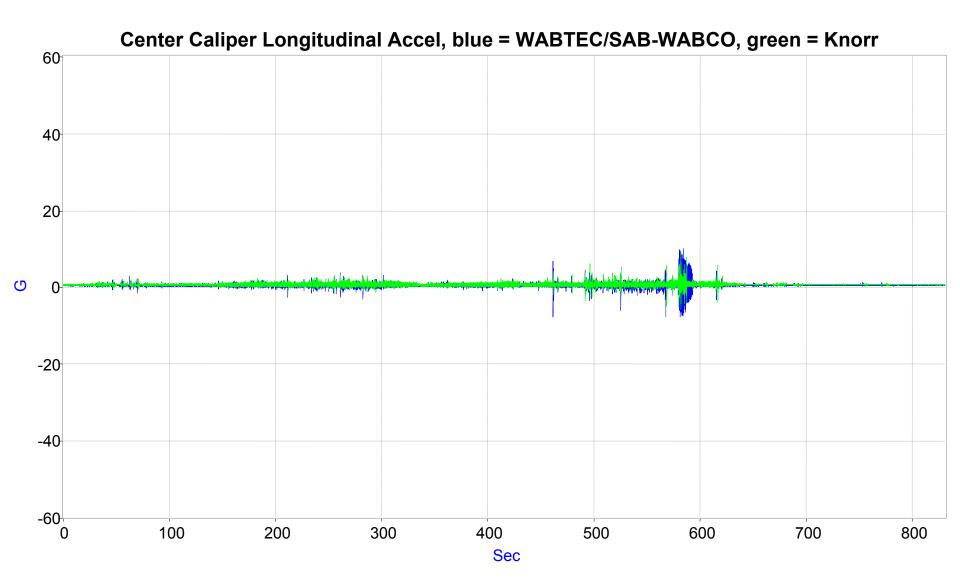

Left Box Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr


PSD of Left Box Lateral Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

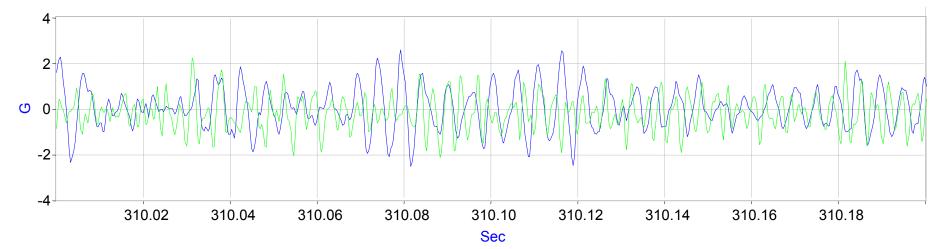
Left Box Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

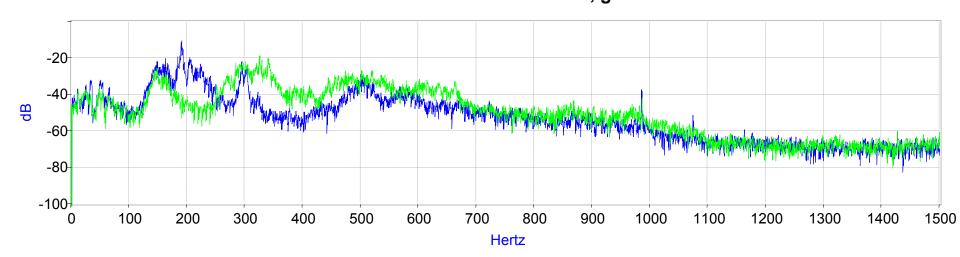

PSD of Left Box Vertical Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

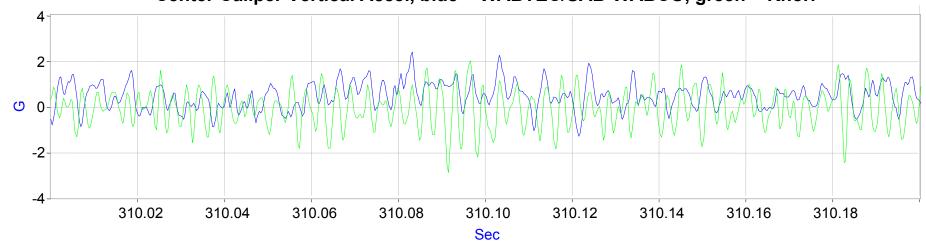


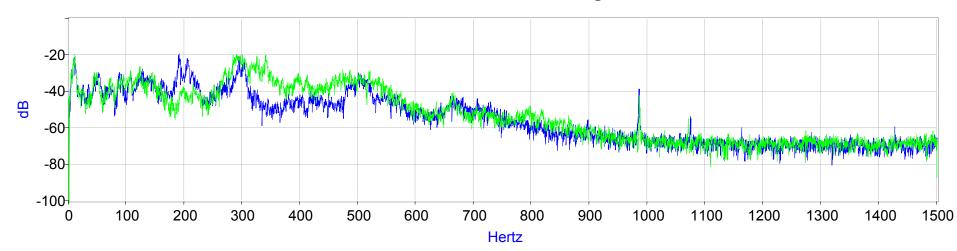

Caliper Accelerations

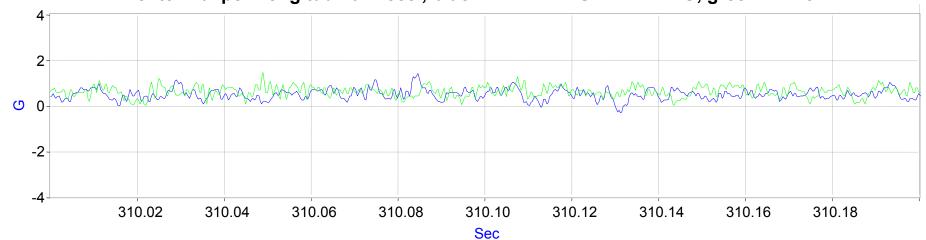
- June 18, 2005 File 24, t = 310–No BOP, Braking
- June 18, 2005 File 24, t = 581–BOP, Braking
- June 18, 2005 File 30, t = 732–BOP, Response to Impact

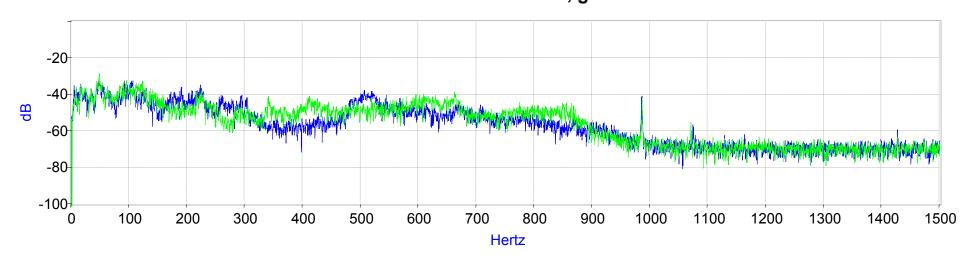

Center Caliper Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

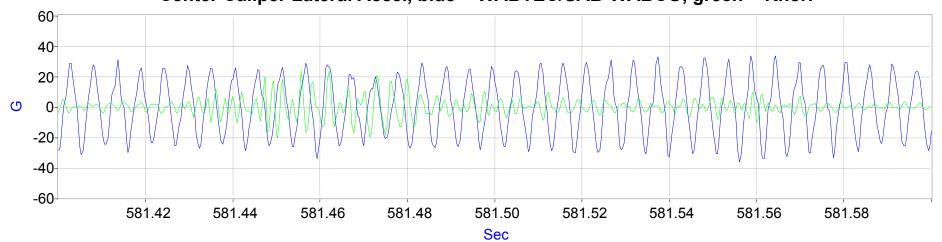


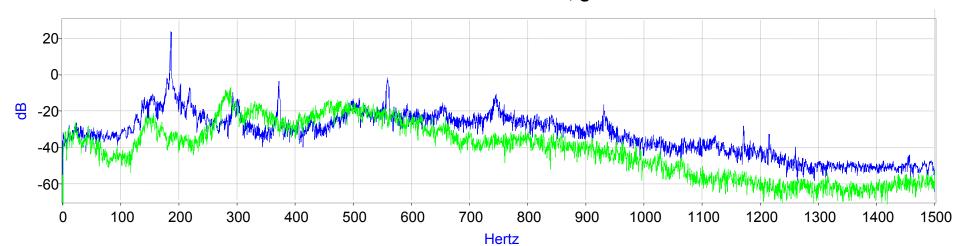

Center Caliper Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

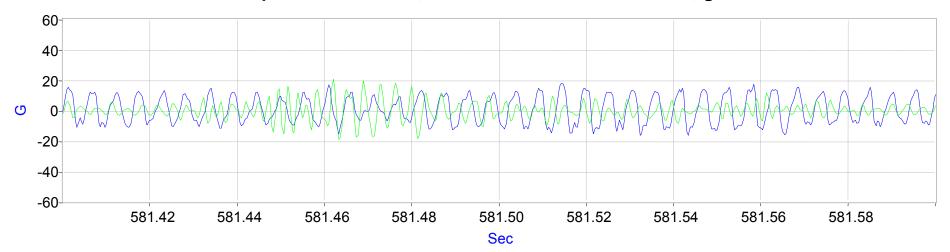

PSD of Center Caliper Lateral Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

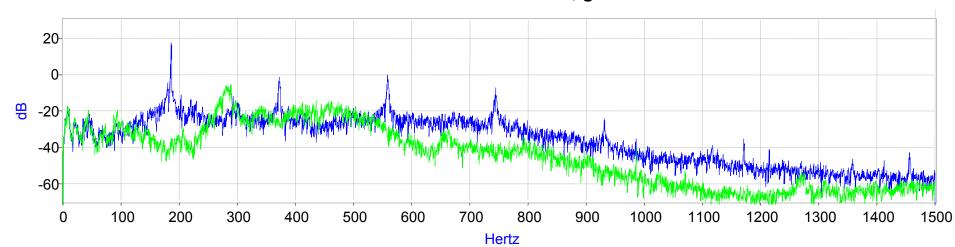

Center Caliper Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

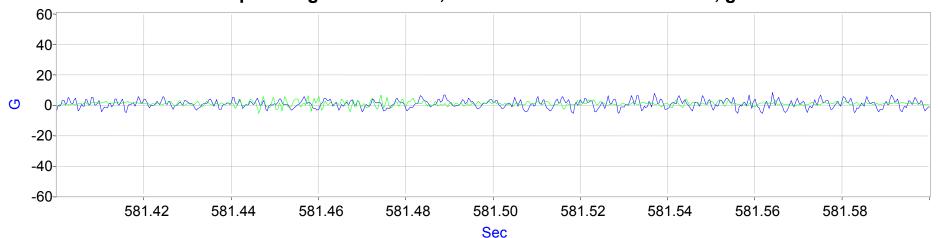

PSD of Center Caliper Vertical Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

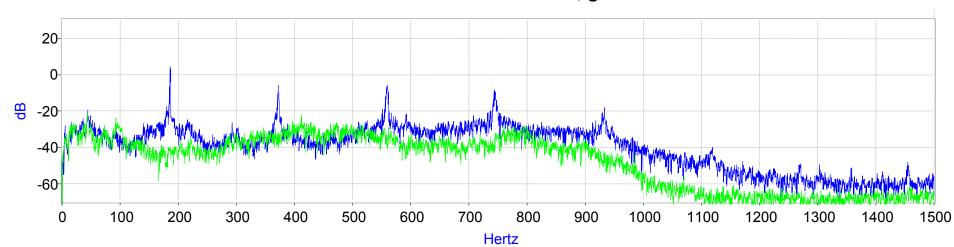

Center Caliper Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

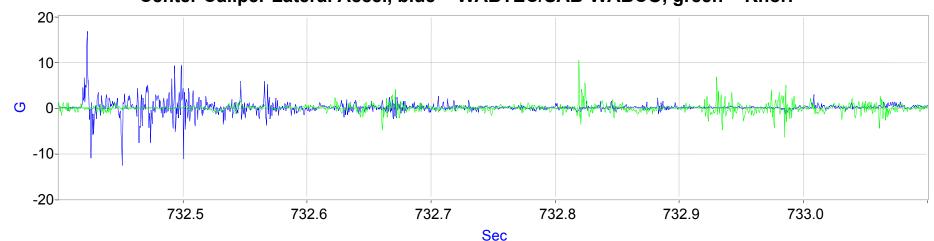

PSD of Center Caliper Longitudinal Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

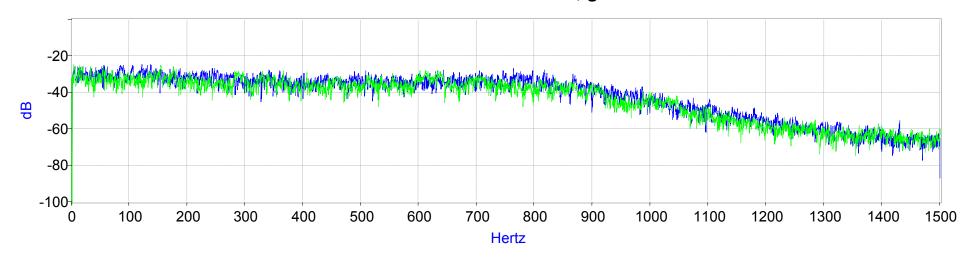

Center Caliper Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

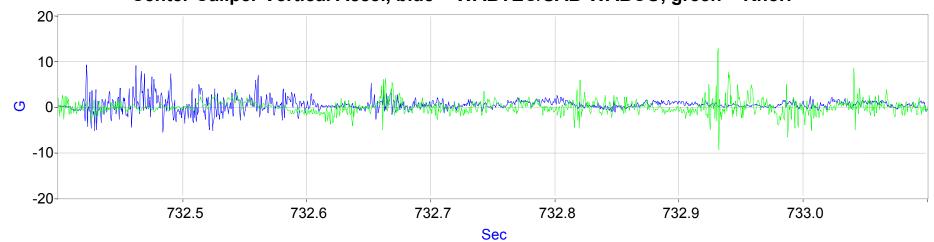

PSD of Center Caliper Lateral Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

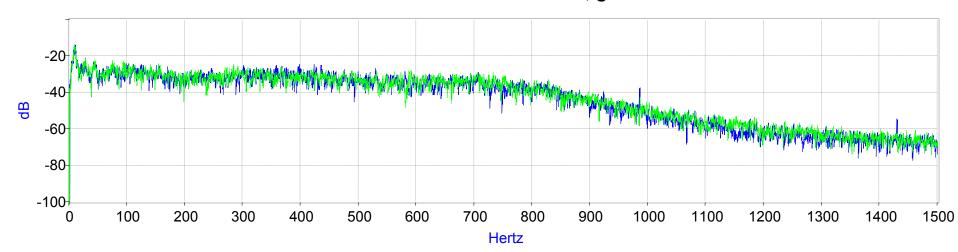

Center Caliper Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

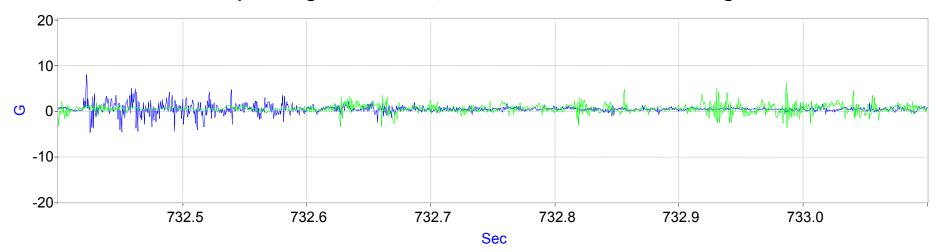

PSD of Center Caliper Vertical Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

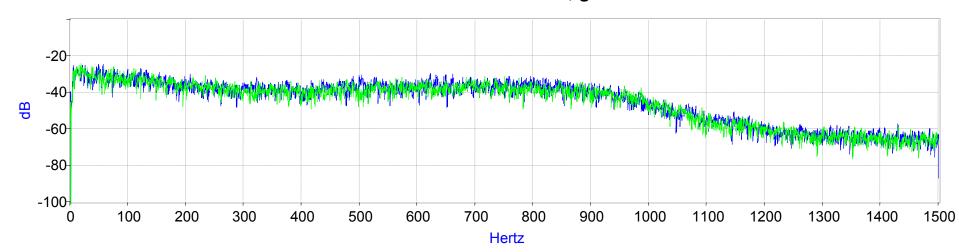

Center Caliper Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr


PSD of Center Caliper Longitudinal Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

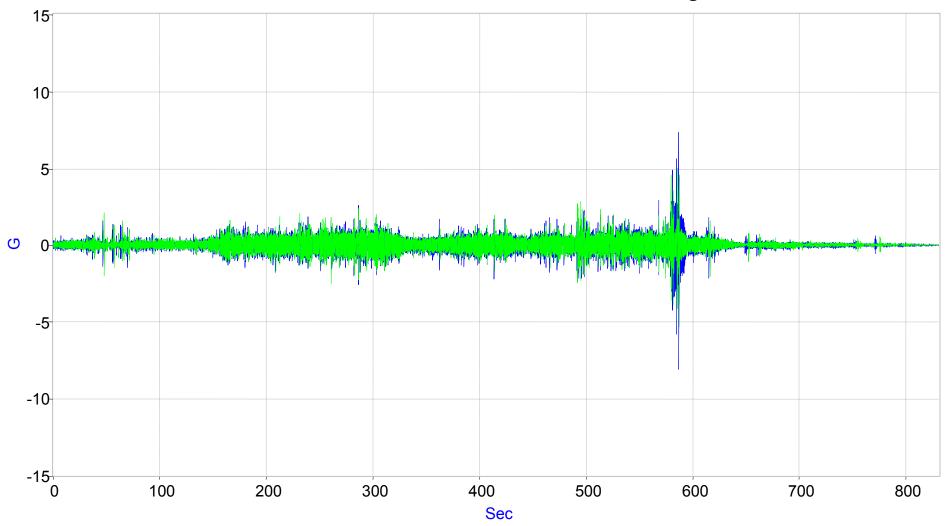

Center Caliper Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

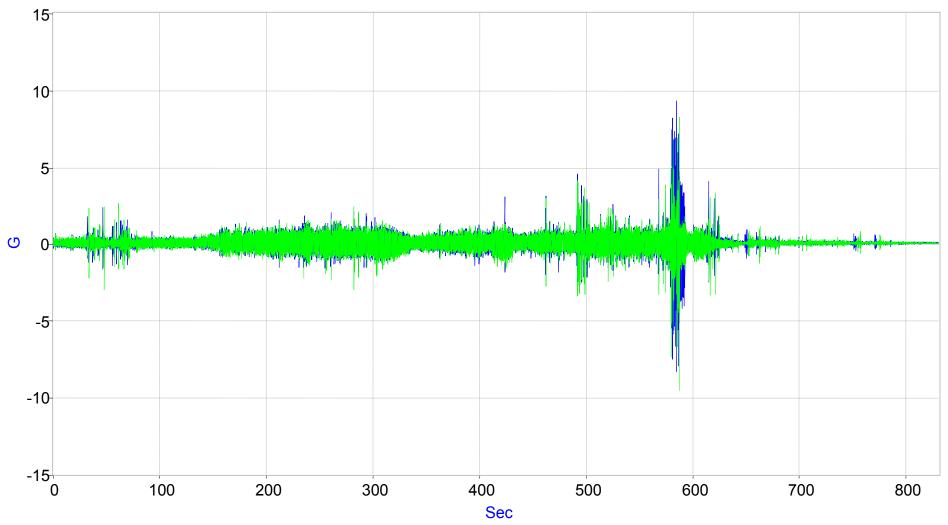

PSD of Center Caliper Lateral Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr


Center Caliper Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

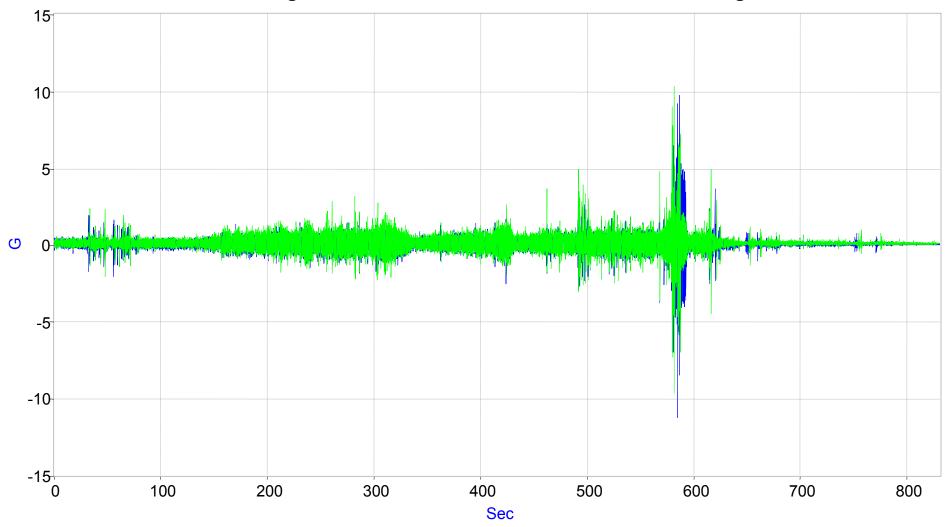

PSD of Center Caliper Vertical Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

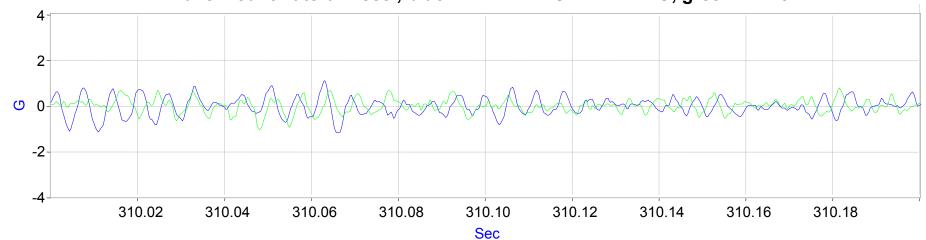
Center Caliper Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

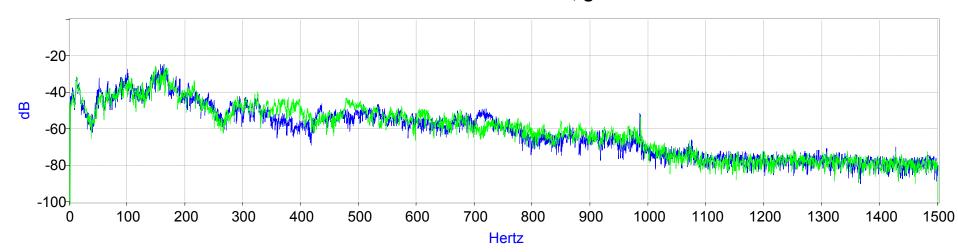

PSD of Center Caliper Longitudinal Accel, 16384 points, 5 point moving avg, t = 732s, blue = WABTEC/SAB-WABCO, green = Knorr

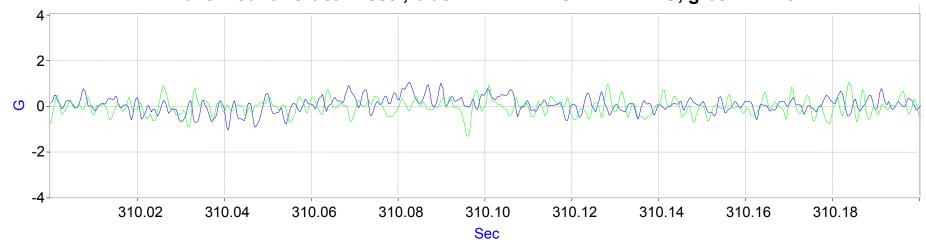

Brake Mount Accelerations

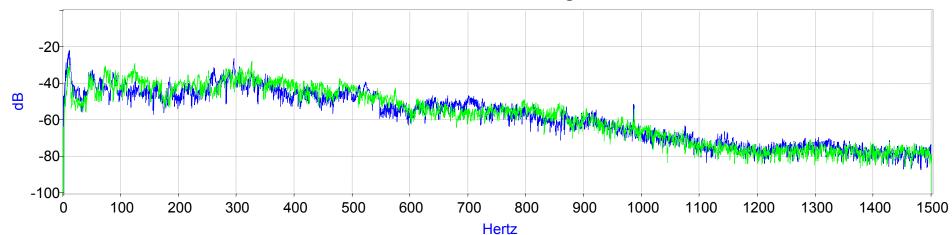
- June 18, 2005 File 24, t = 310–No BOP, Braking
- June 18, 2005 File 24, t = 581–BOP, Braking
- June 18, 2005 File 30, t = 732–BOP, Response to Impact

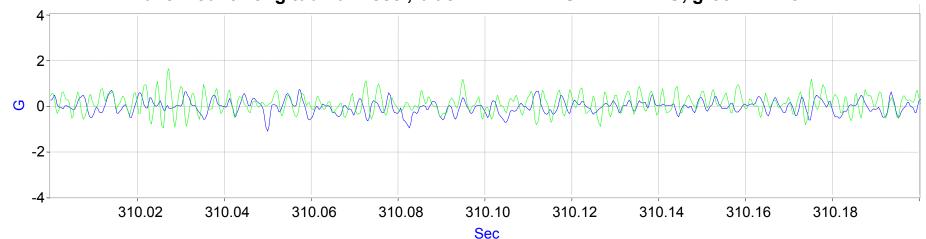

Brake Mount Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

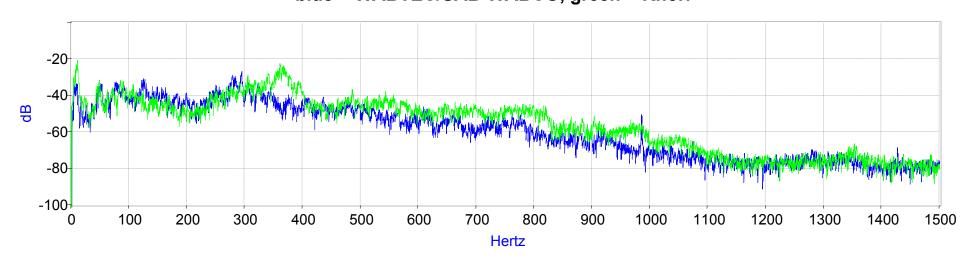

Brake Mount Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

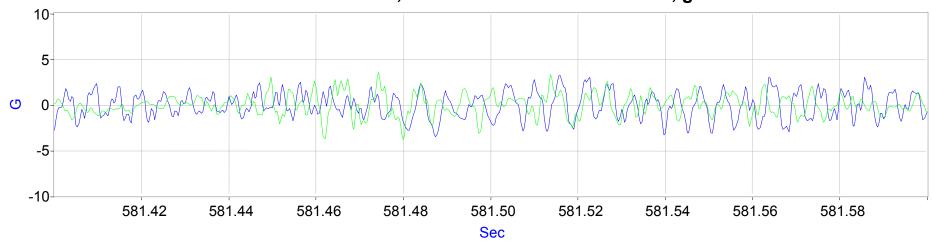

Brake Mount Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

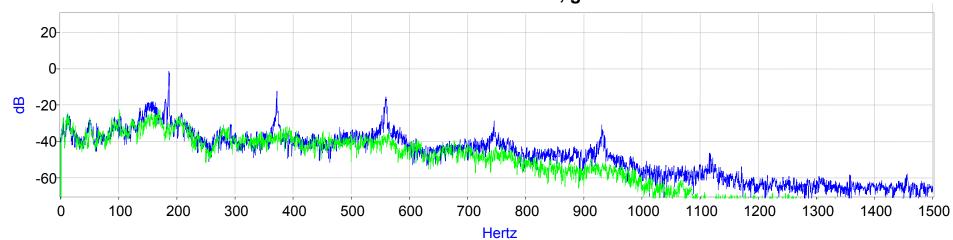

Brake Mount Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

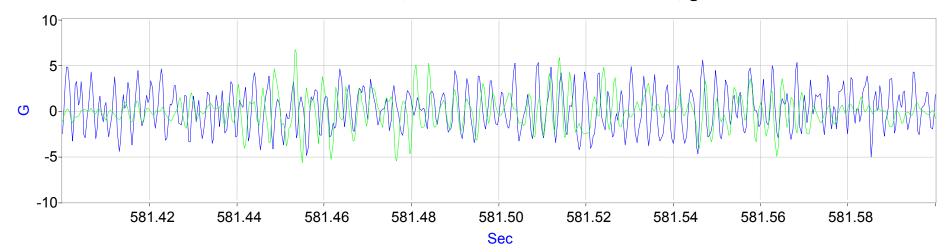

PSD of Brake Mount Lateral Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

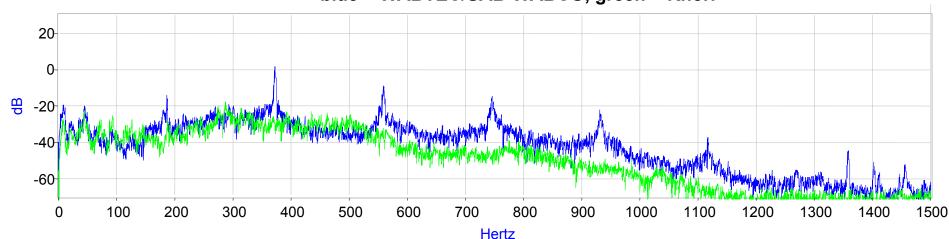

Brake Mount Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

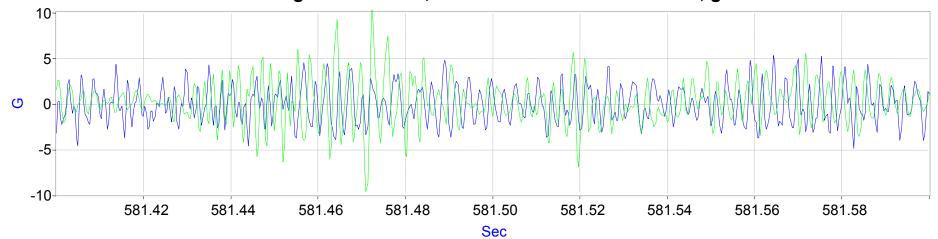

PSD of Brake Mount Vertical Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

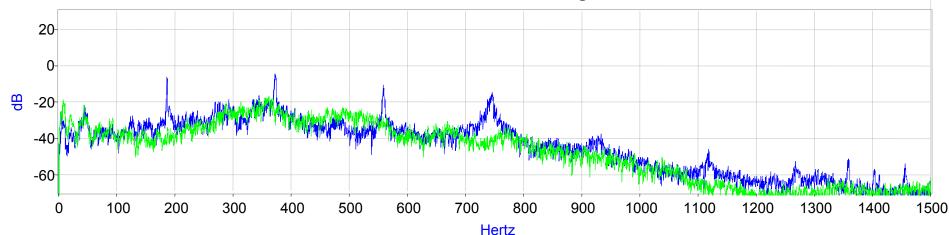

Brake Mount Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

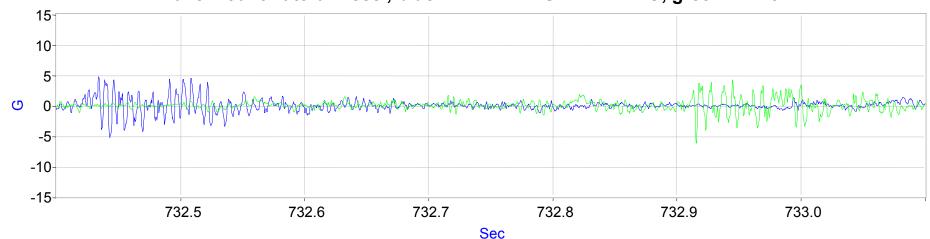

PSD of Brake Mount Longitudinal Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

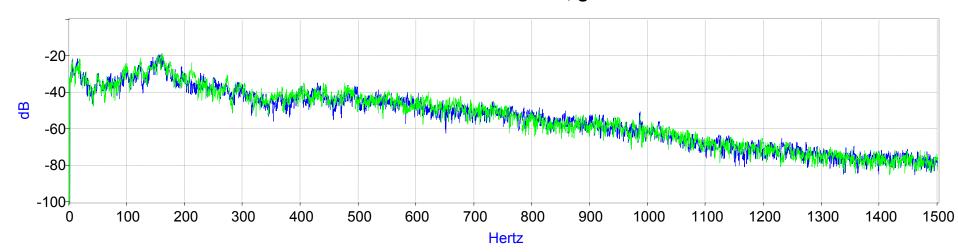

Brake Mount Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

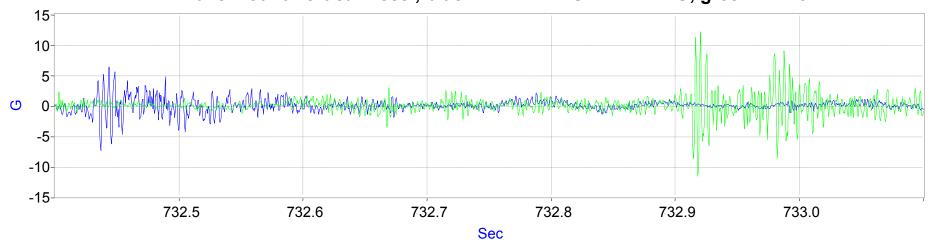

PSD of Brake Mount Lateral Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

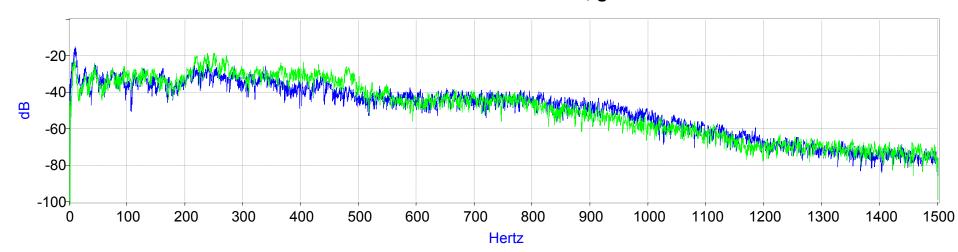

Brake Mount Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

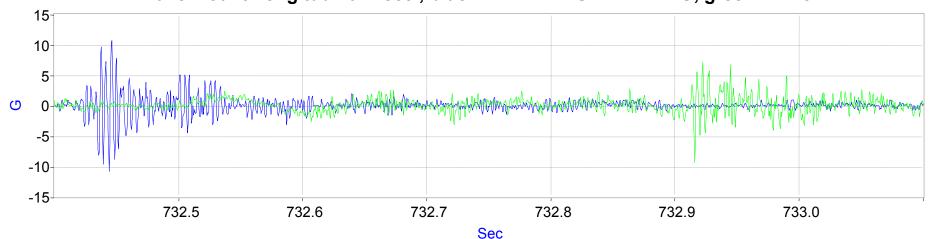

PSD of Brake Mount Vertical Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

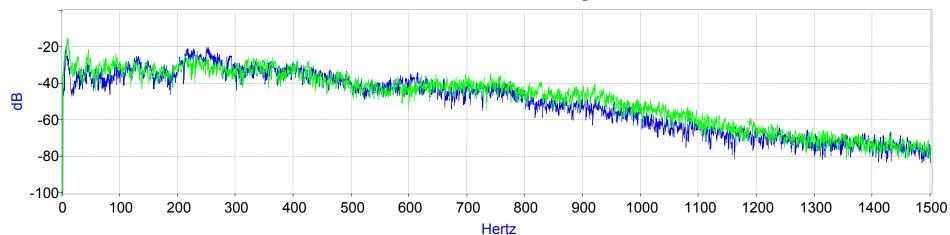

Brake Mount Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr


PSD of Brake Mount Longitudinal Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

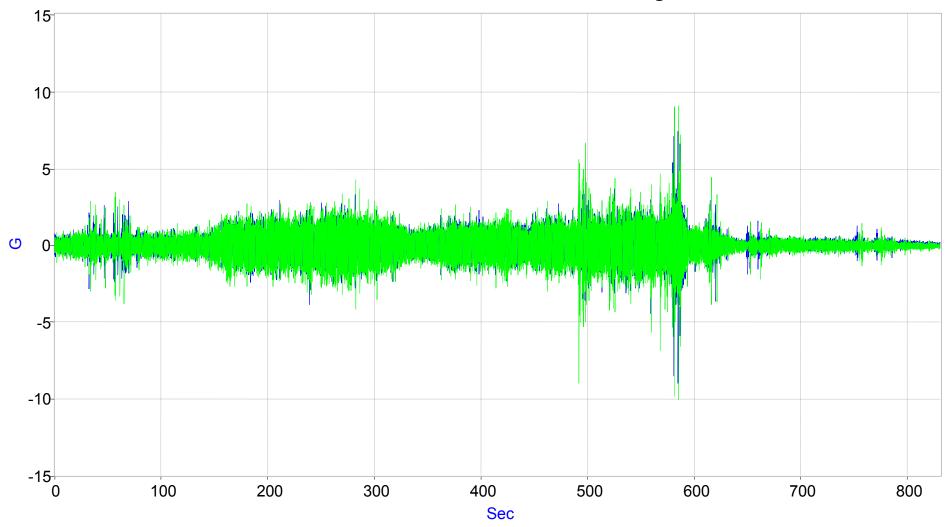

Brake Mount Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

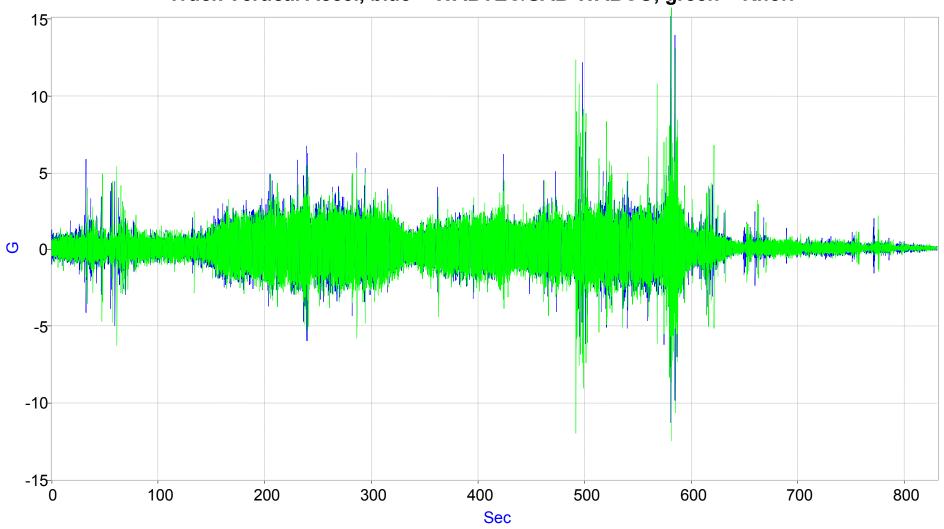

PSD of Brake Mount Lateral Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr


Brake Mount Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

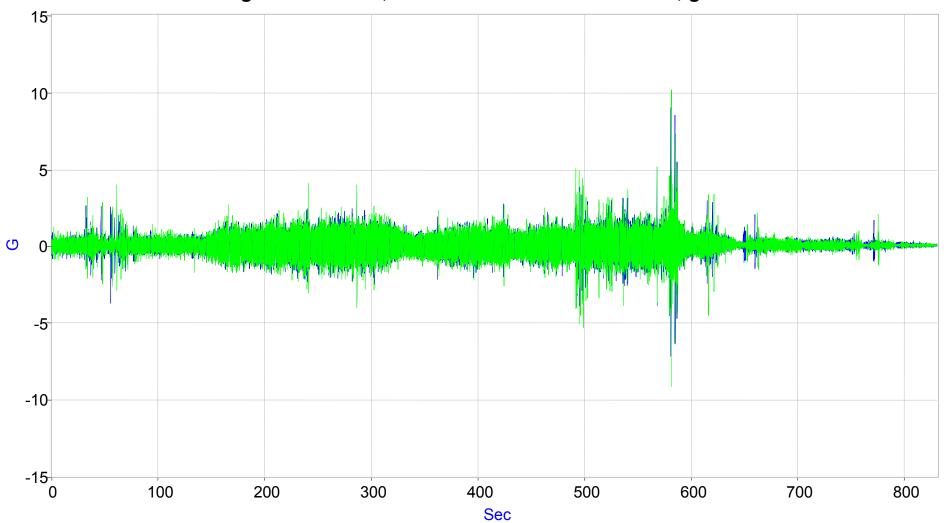

PSD of Brake Mount Vertical Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

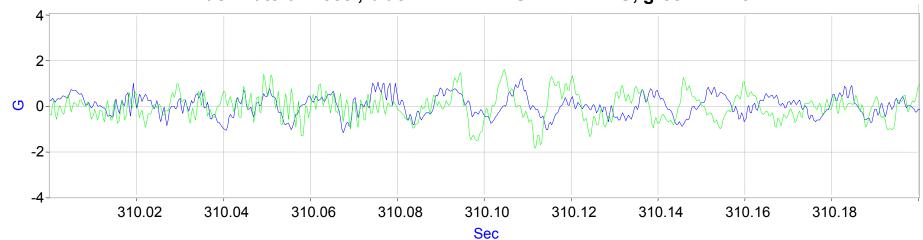
Brake Mount Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

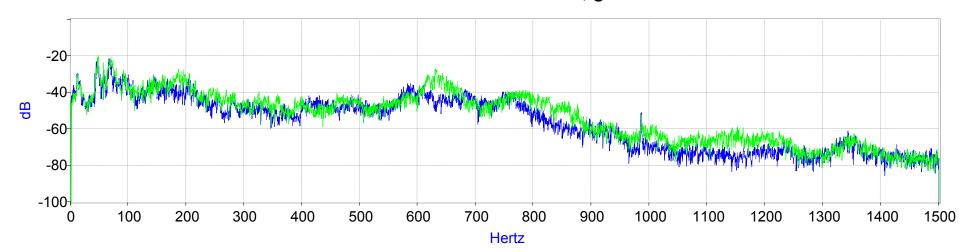

PSD of Brake Mount Longitudinal Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

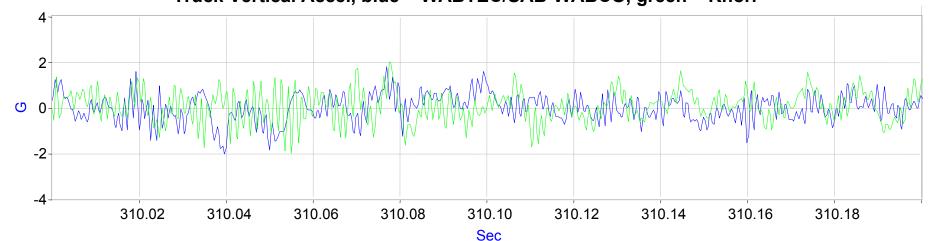

Truck Accelerations

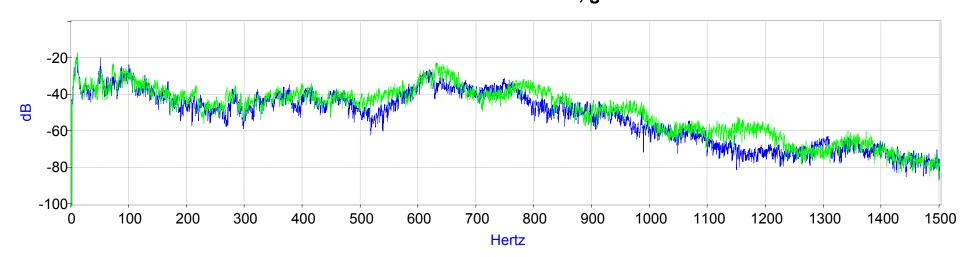
- June 18, 2005 File 24, t = 310–No BOP, Braking
- June 18, 2005 File 24, t = 581–BOP, Braking
- June 18, 2005 File 30, t = 732–BOP, Response to Impact

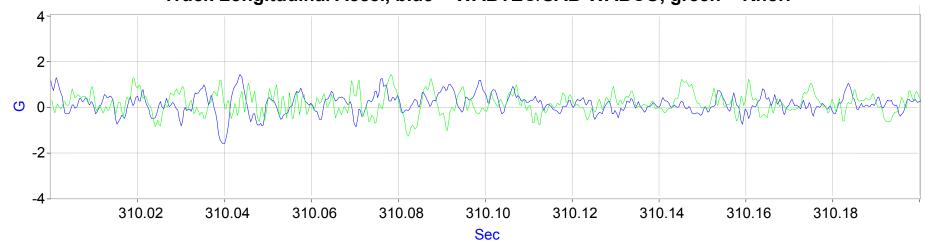

Truck Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

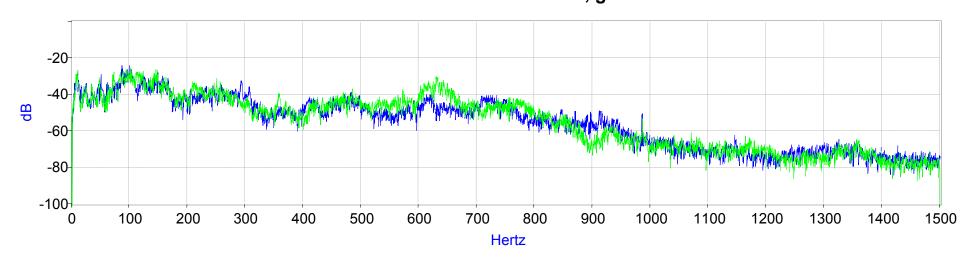

Truck Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

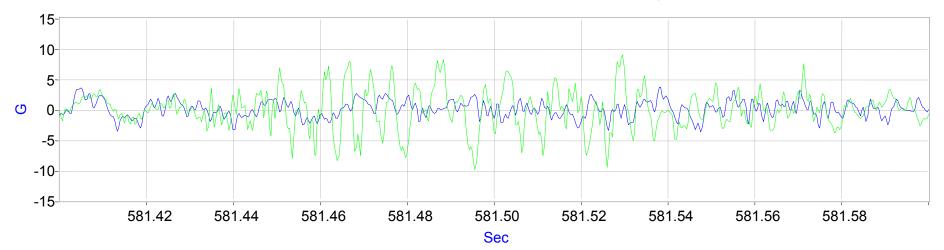

Truck Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

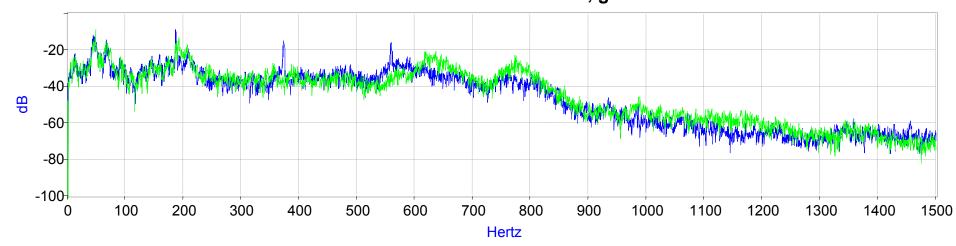

Truck Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

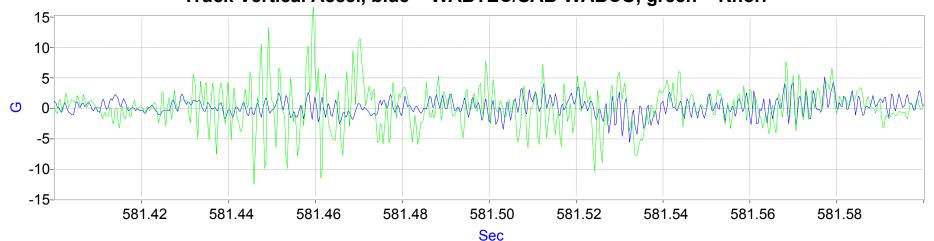

PSD of Truck Lateral Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

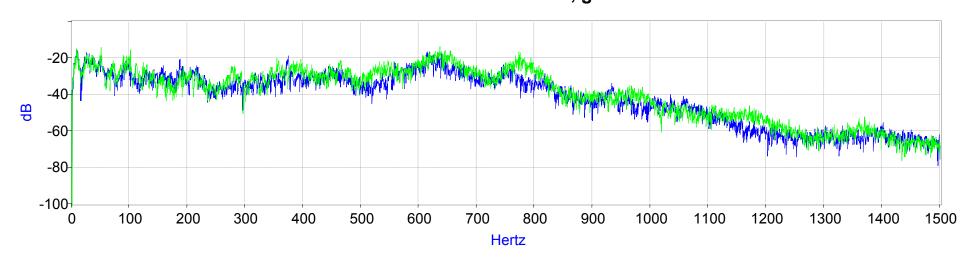

Truck Vertical Accel, blue = WABTEC/SAB-WABCO, green = Knorr

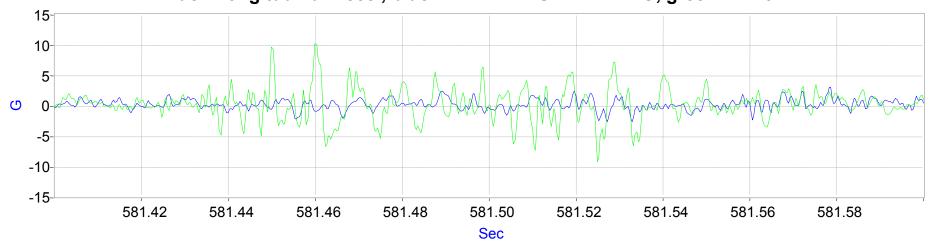

PSD of Truck Vertical Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

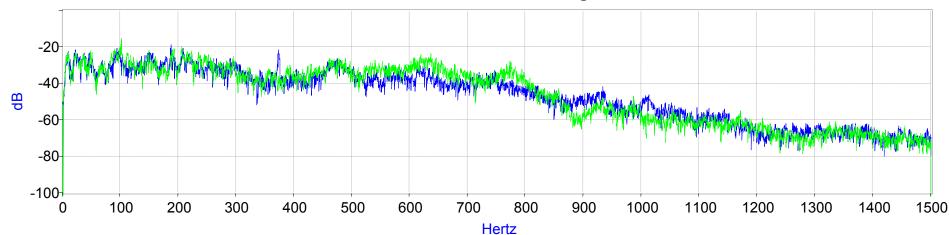

Truck Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

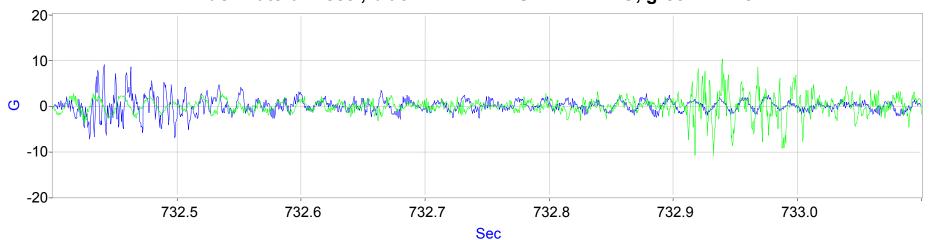

PSD of Truck Longitudinal Accel, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

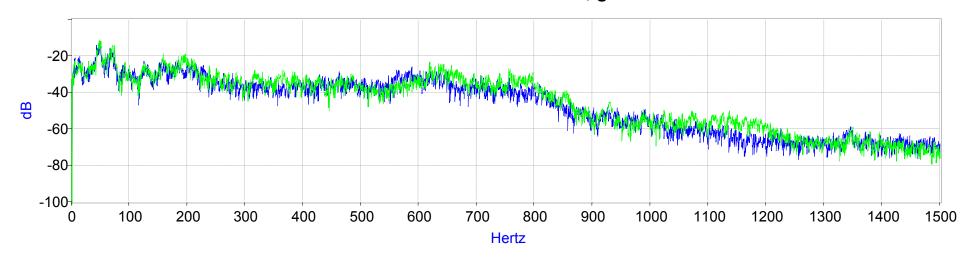

Truck Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

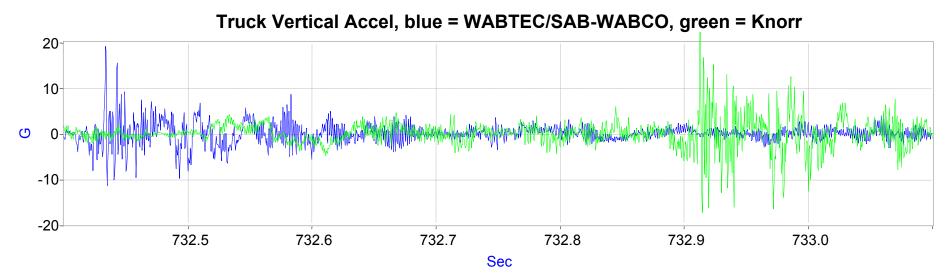

PSD of Truck Lateral Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr



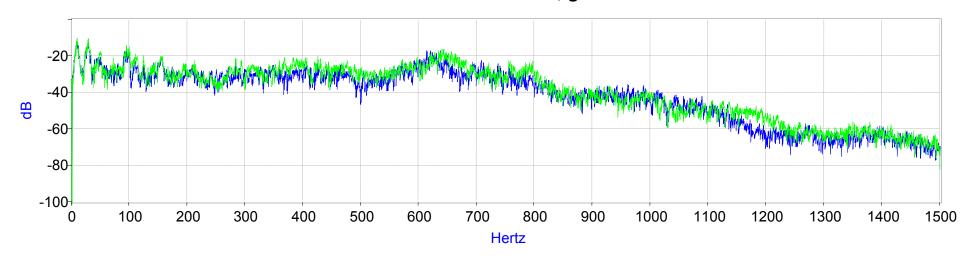

PSD of Truck Vertical Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr


Truck Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

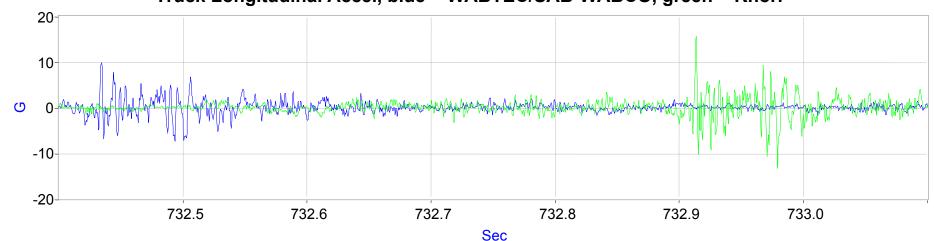

PSD of Truck Longitudinal Accel, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

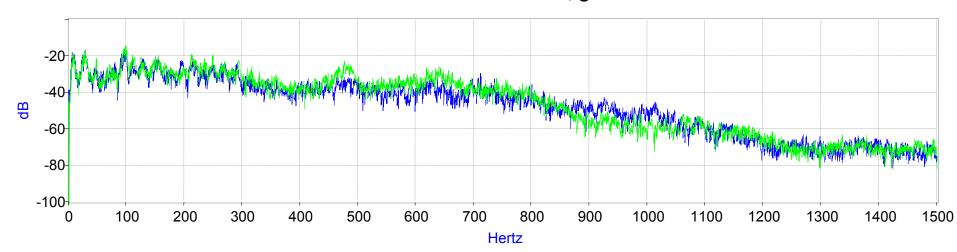


Truck Lateral Accel, blue = WABTEC/SAB-WABCO, green = Knorr

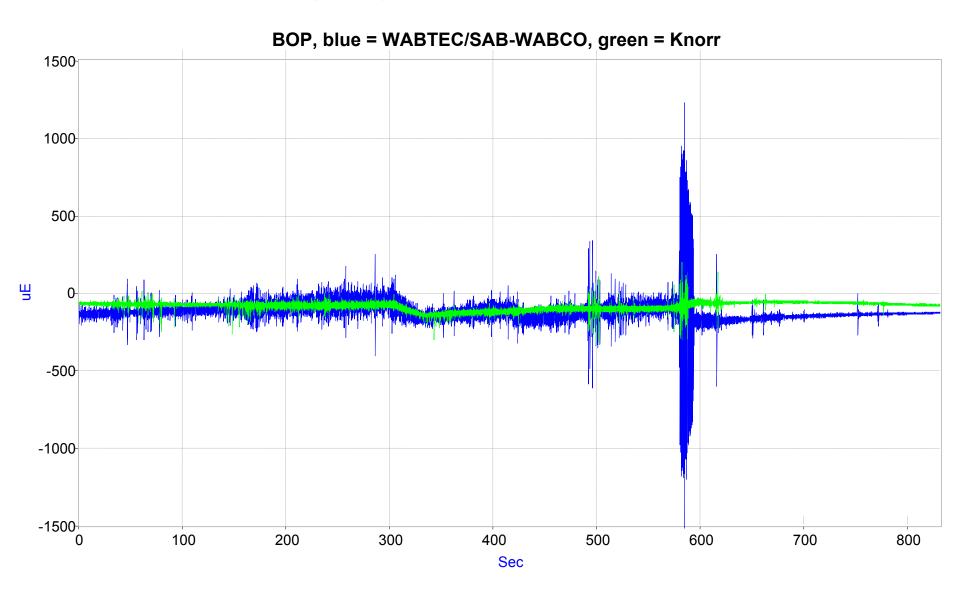


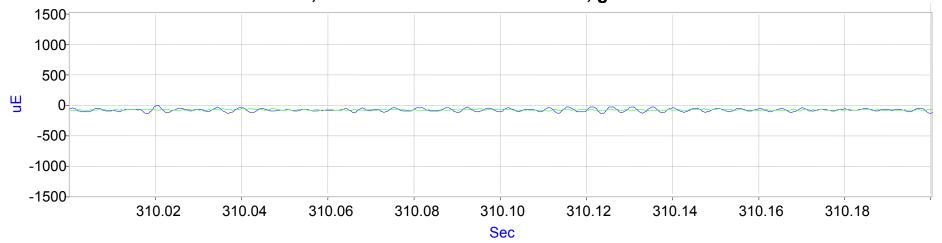
PSD of Truck Lateral Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr



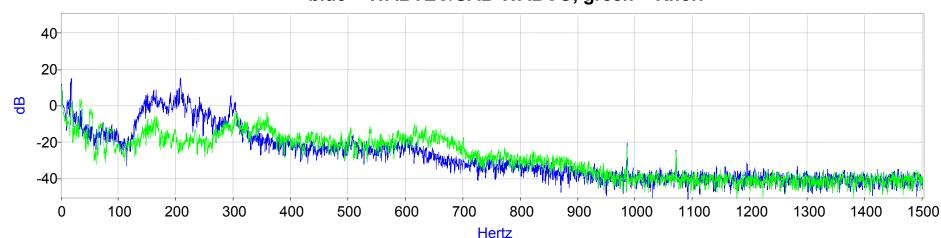

PSD of Truck Vertical Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr

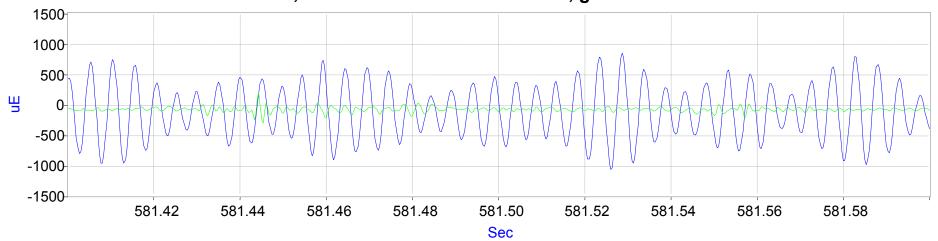
Truck Longitudinal Accel, blue = WABTEC/SAB-WABCO, green = Knorr

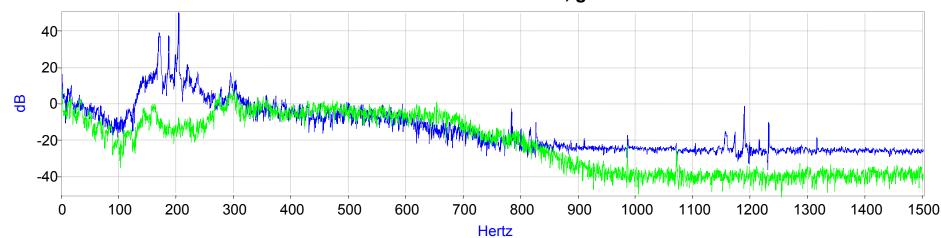

PSD of Truck Longitudinal Accel, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr


BOP Responses

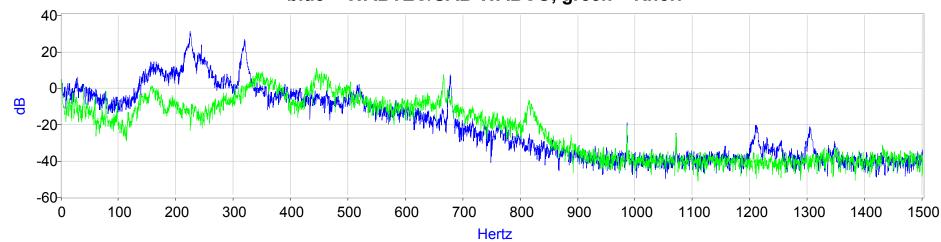
- June 18, 2005 File 24, t = 310–No BOP, Braking
- June 18, 2005 File 24, t = 581–BOP, Braking
- June 18, 2005 File 30, t = 732–BOP, Response to Impact

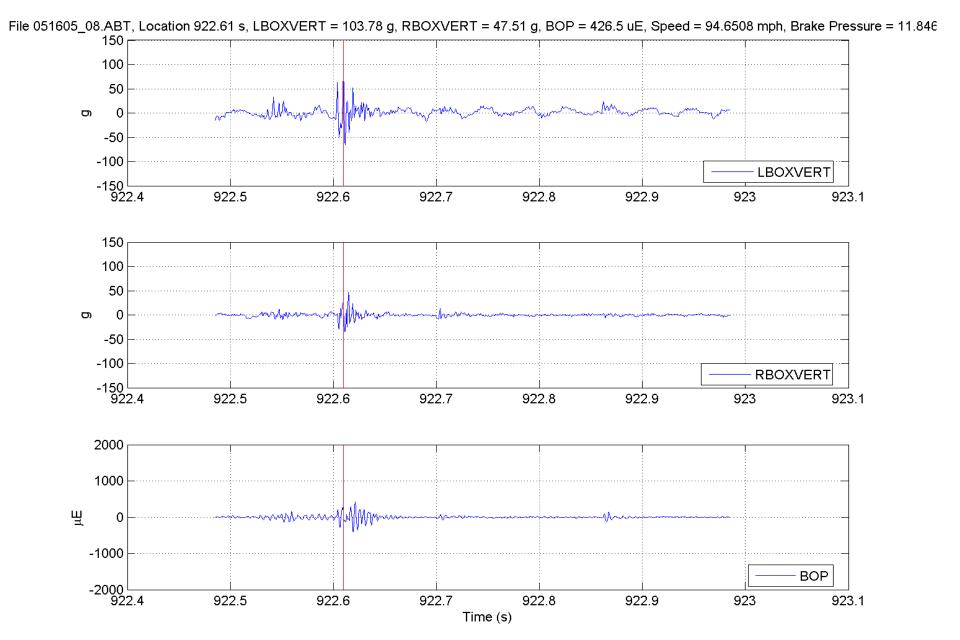

6/18/2005-File 24


BOP, blue = WABTEC/SAB-WABCO, green = Knorr

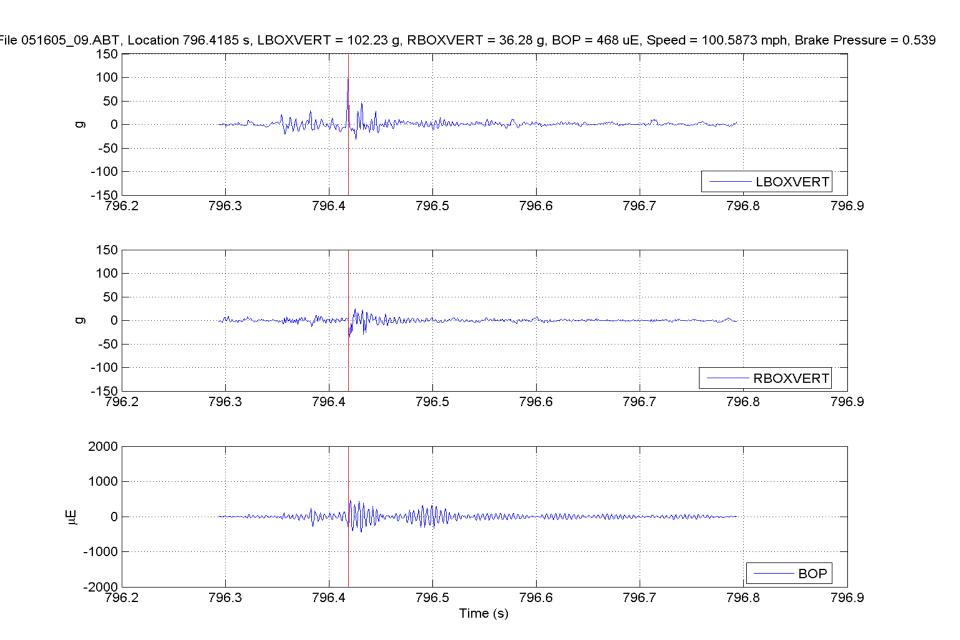

PSD of BOP, 16384 points, 5 point moving avg, t = 310 s, blue = WABTEC/SAB-WABCO, green = Knorr

BOP, blue = WABTEC/SAB-WABCO, green = Knorr

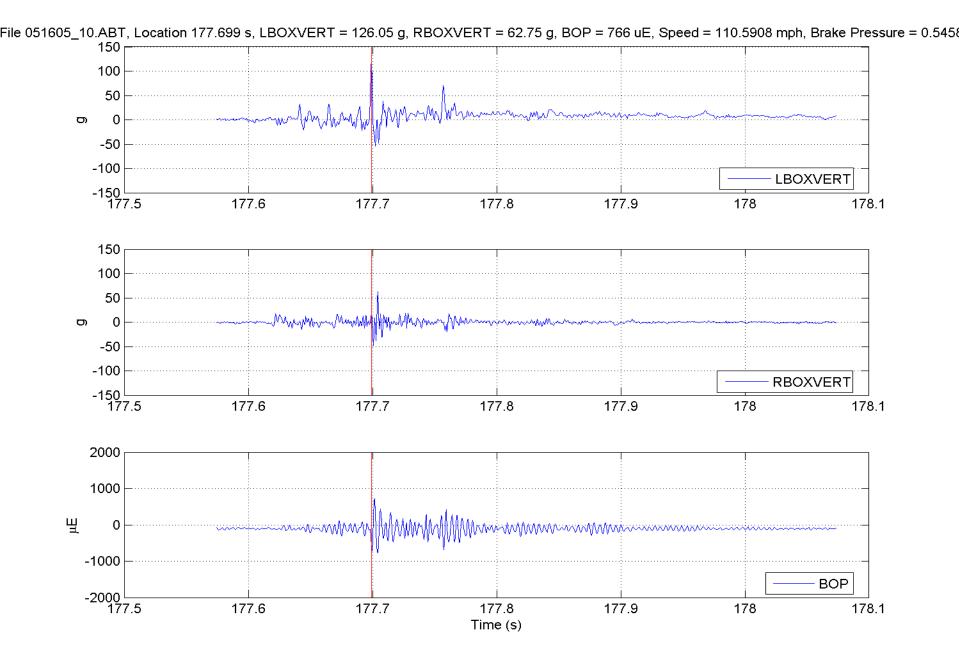

PSD of BOP, 16384 points, 5 point moving avg, t = 581 s, blue = WABTEC/SAB-WABCO, green = Knorr

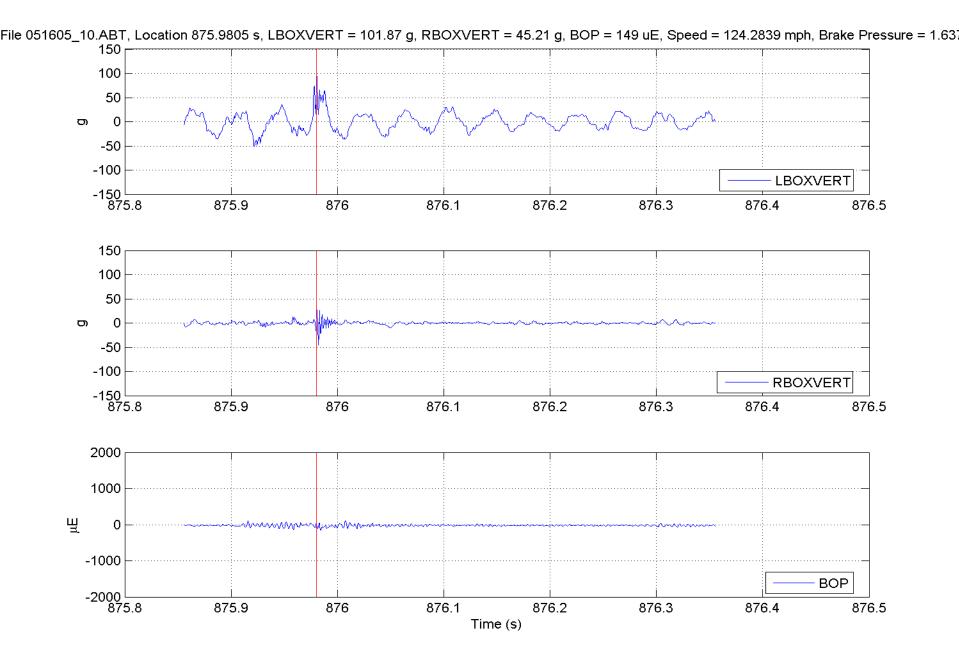


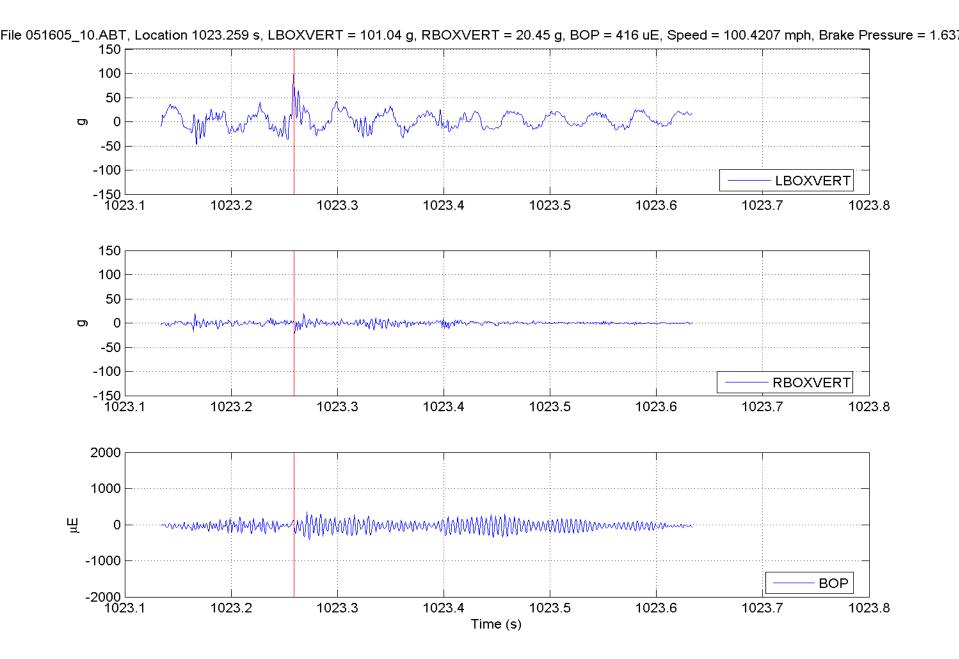
PSD of BOP, 16384 points, 5 point moving avg, t = 732 s, blue = WABTEC/SAB-WABCO, green = Knorr



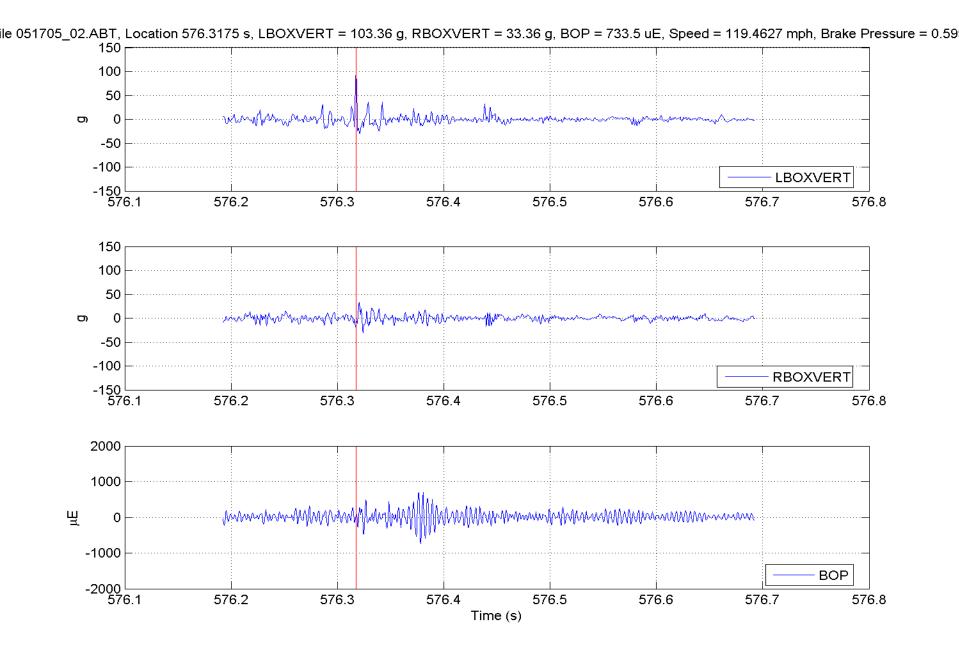
Plots of Axle Vertical Accelerations Exceeding 100 G


Day 1-May 16, 2005

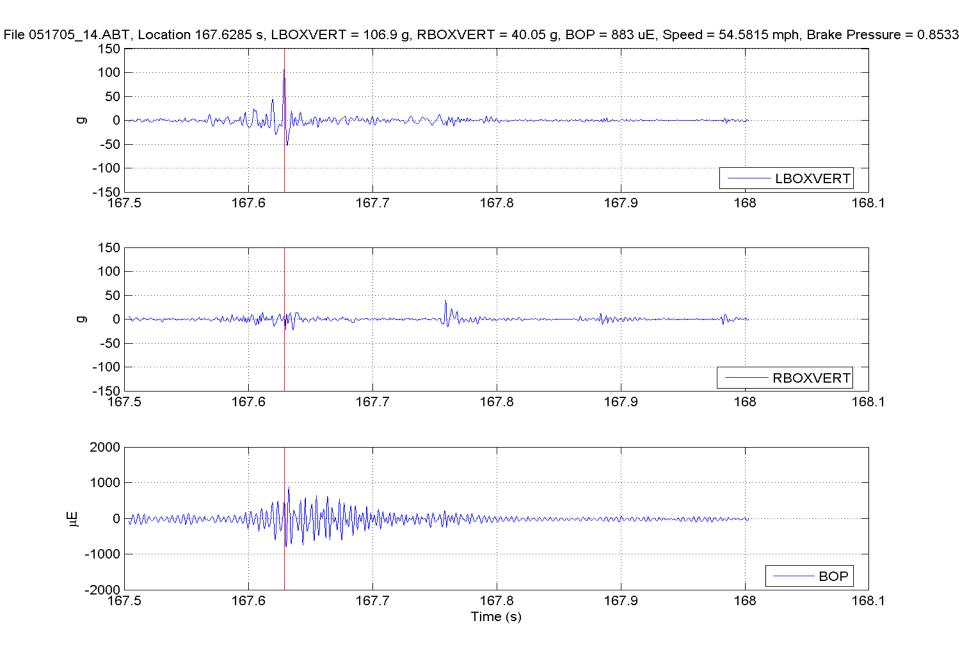

F-112


F-113

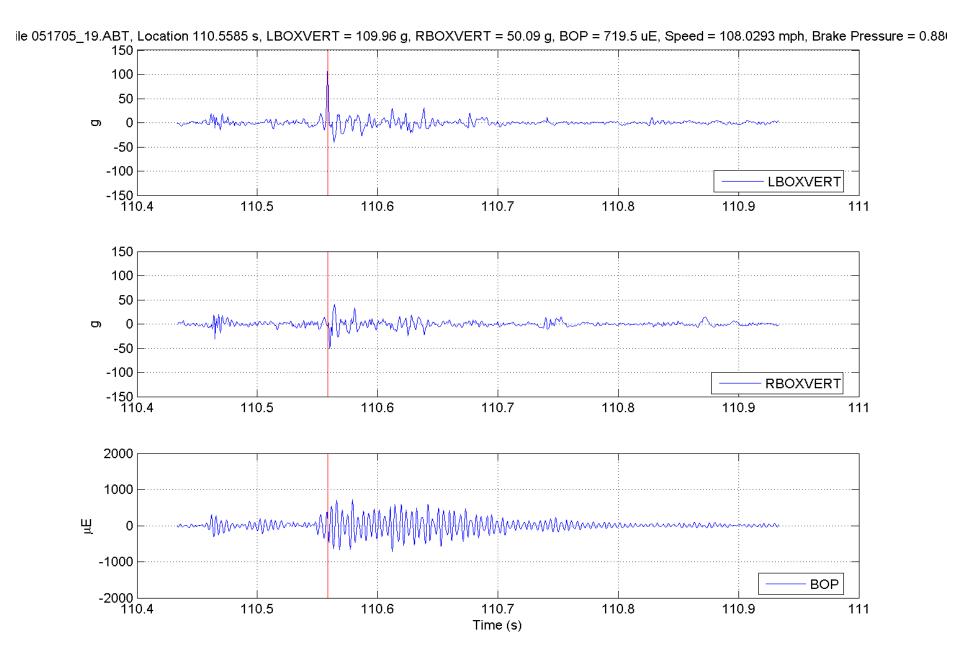
F-114

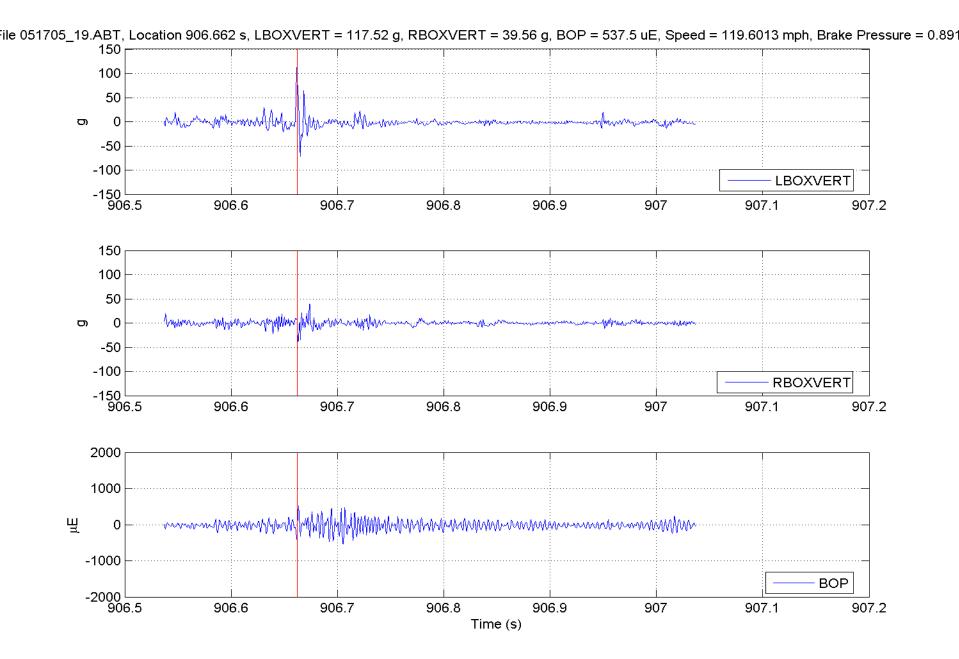


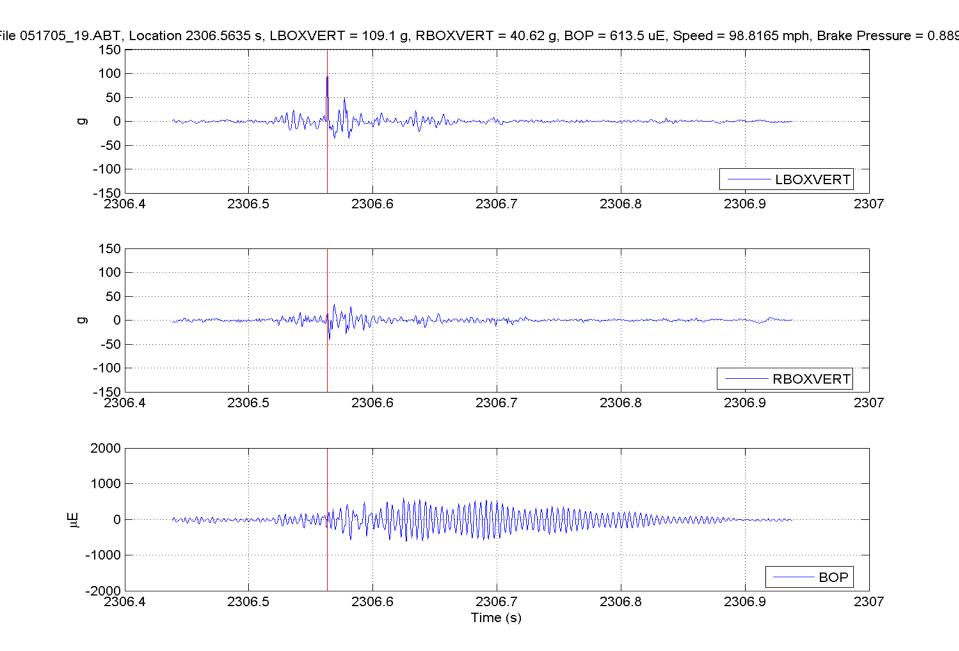
F-115

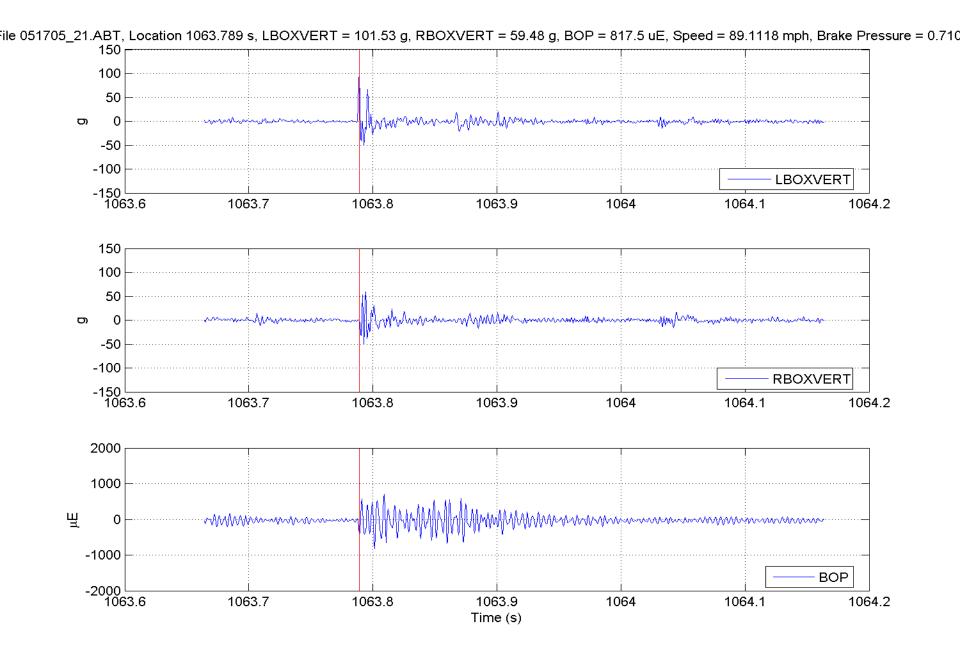


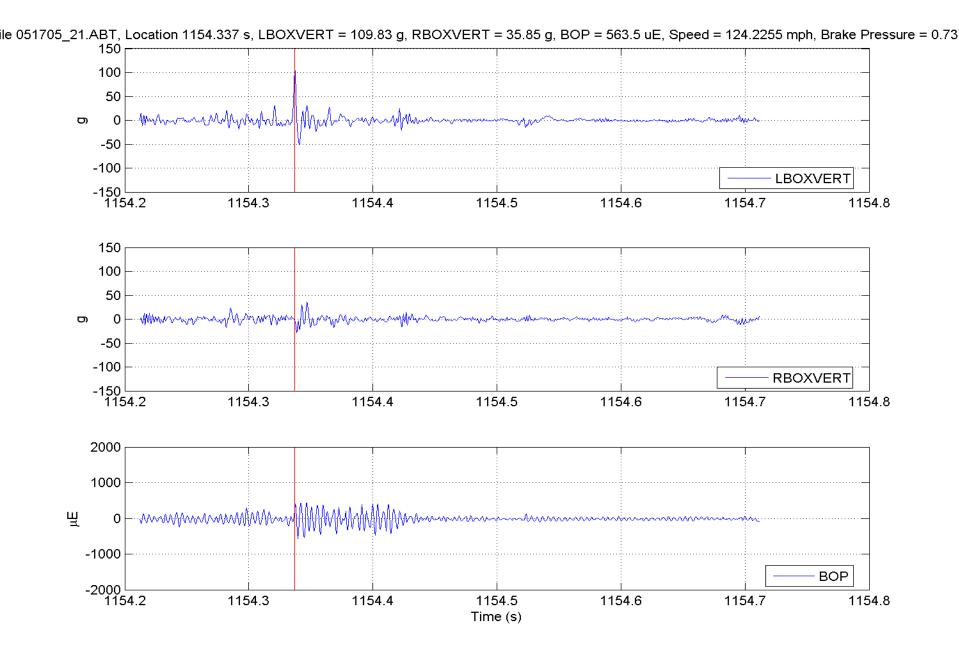
F-116

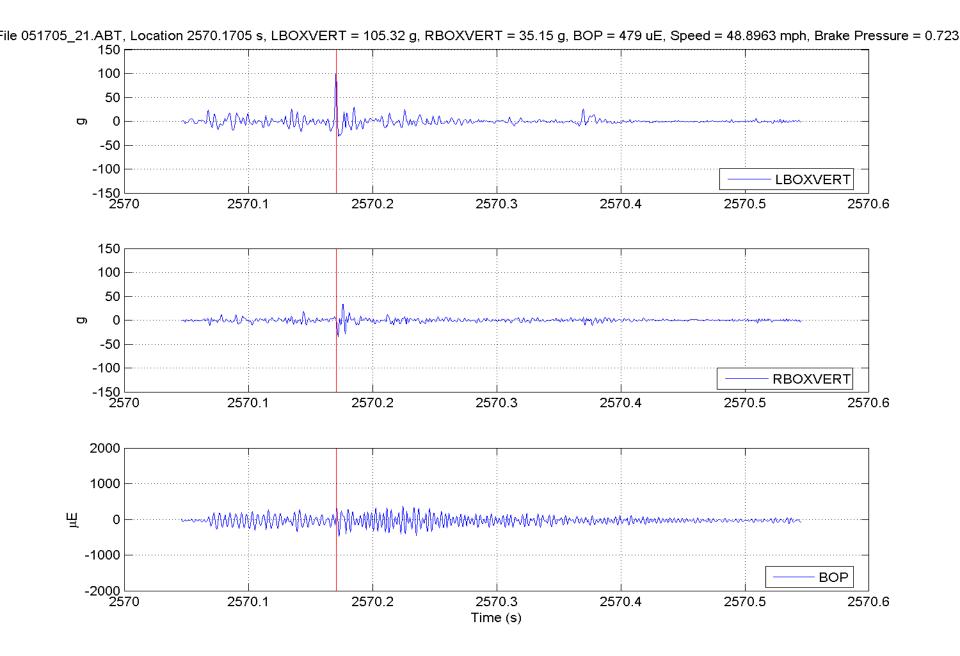

Day 2-May 17, 2005


F-118

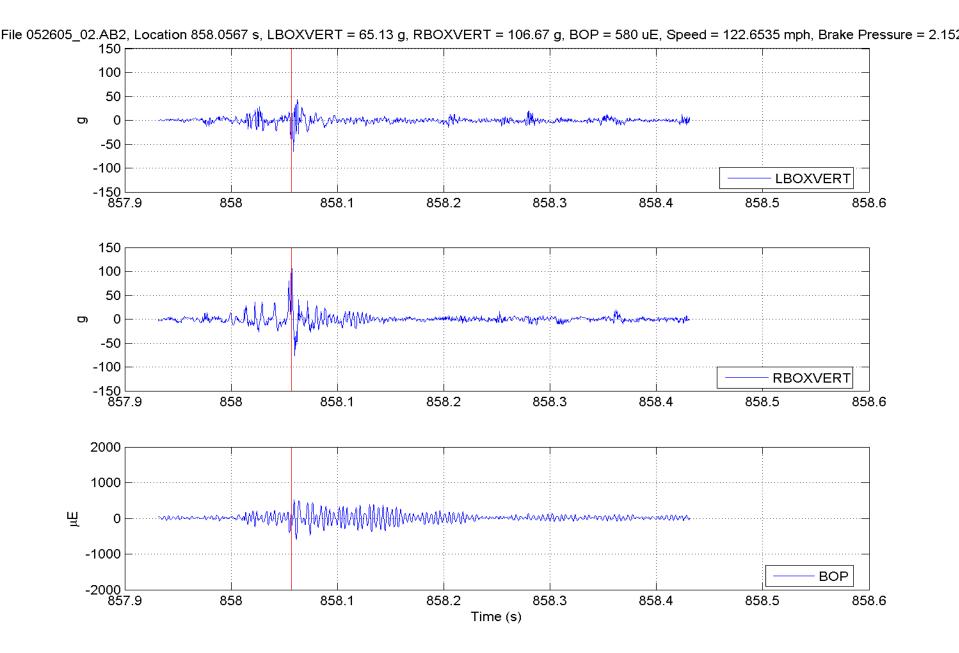

F-119


F-120

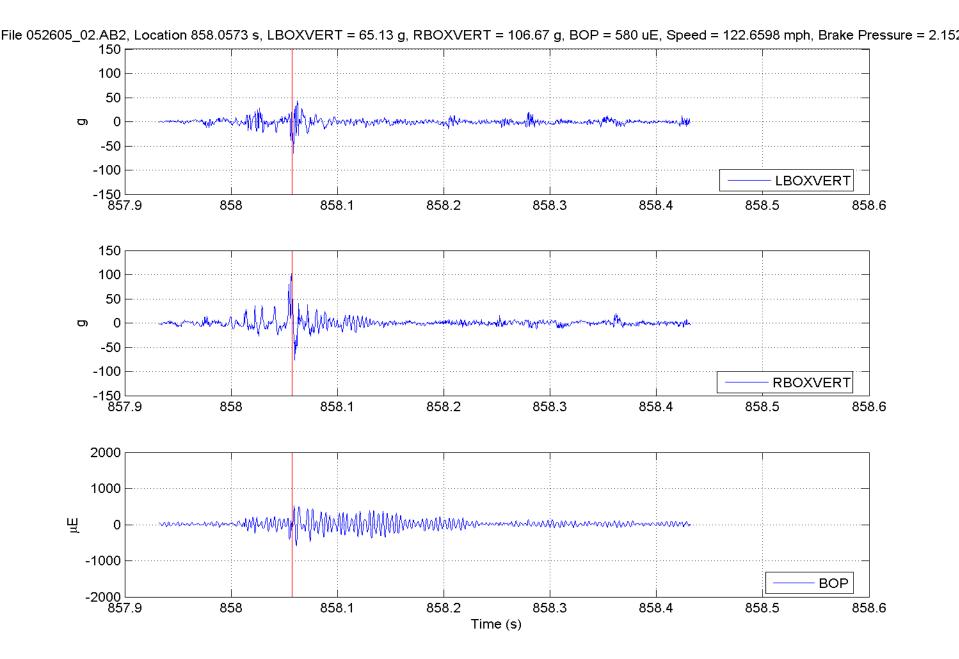

F-121


F-122

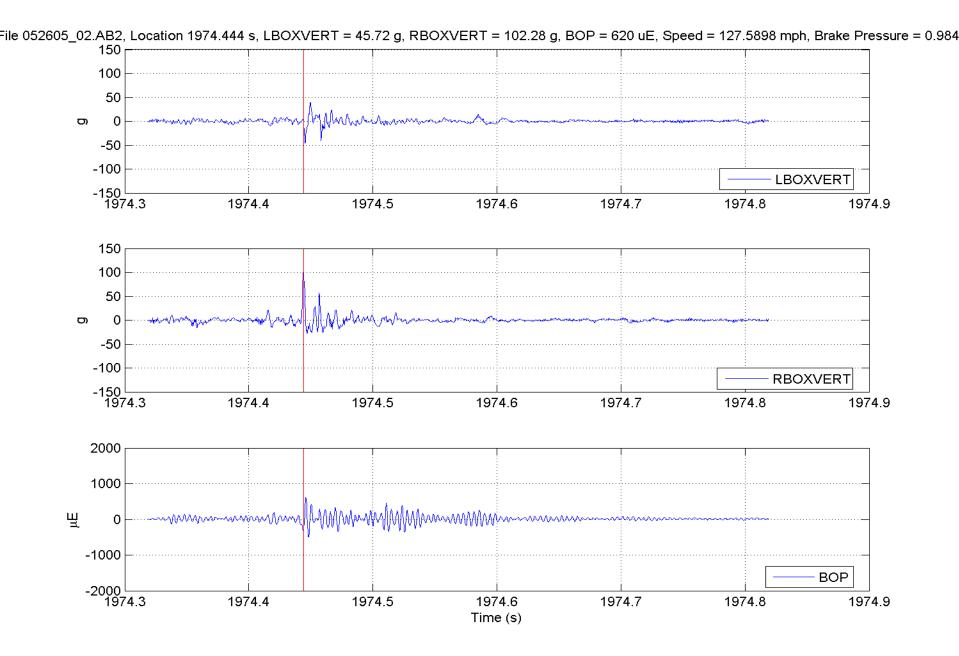
F-123

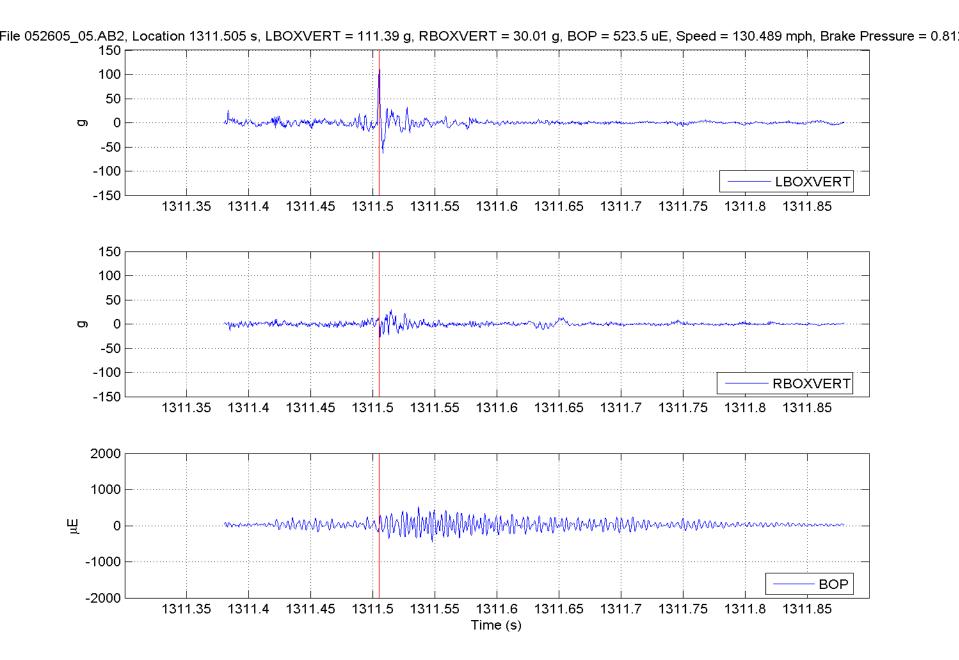


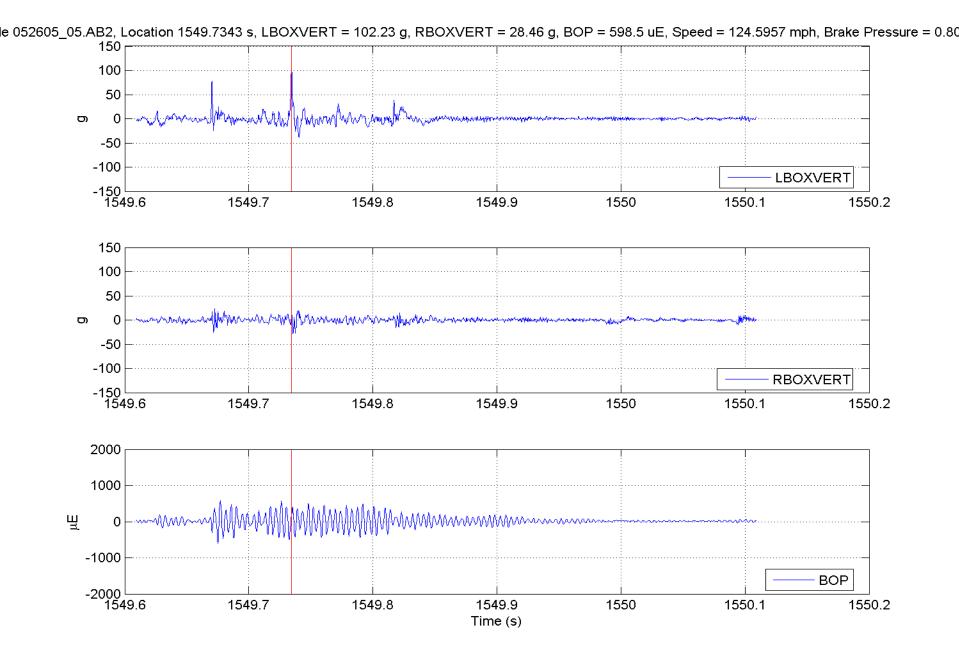
F-124

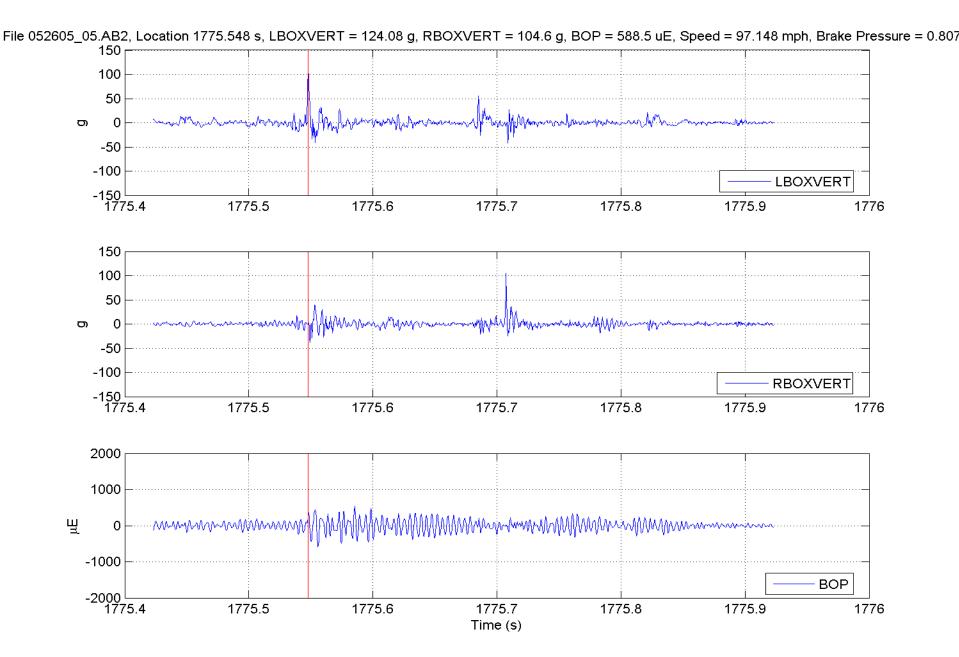


F-125

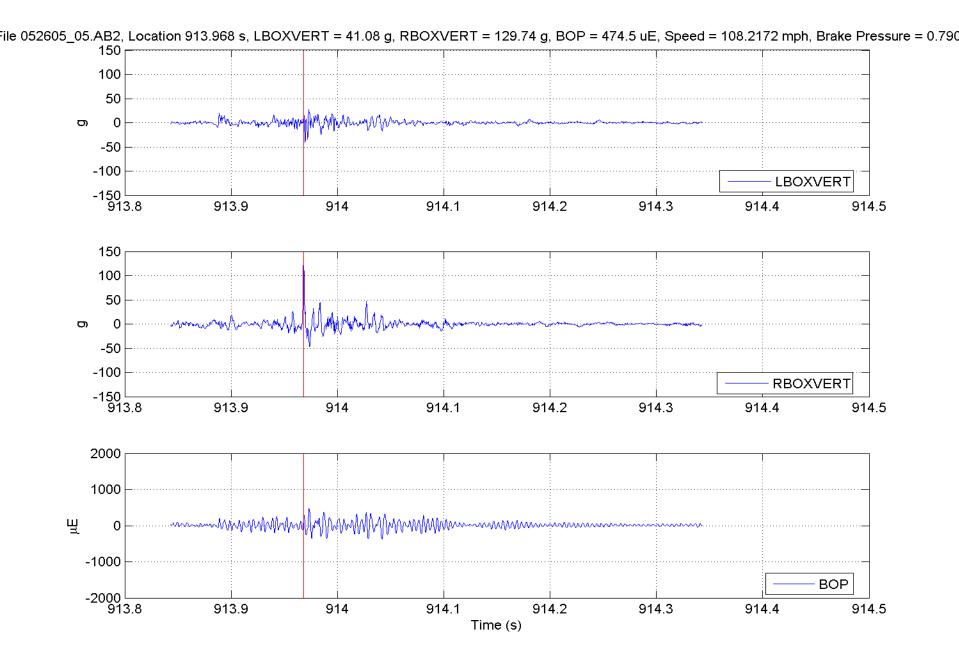

Day 3-May 26, 2005


F-127

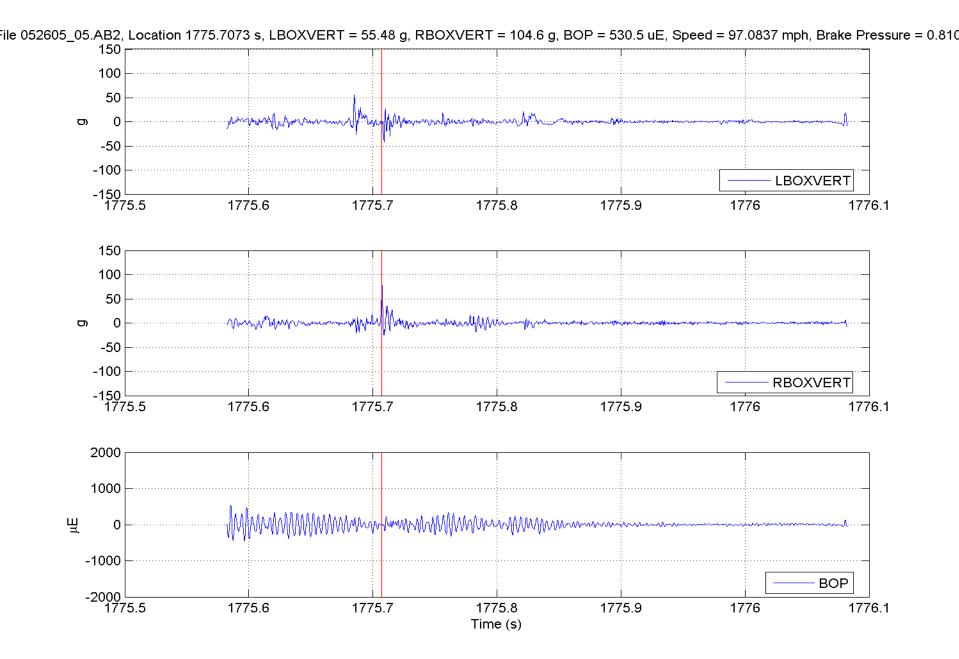

F-128


F-129

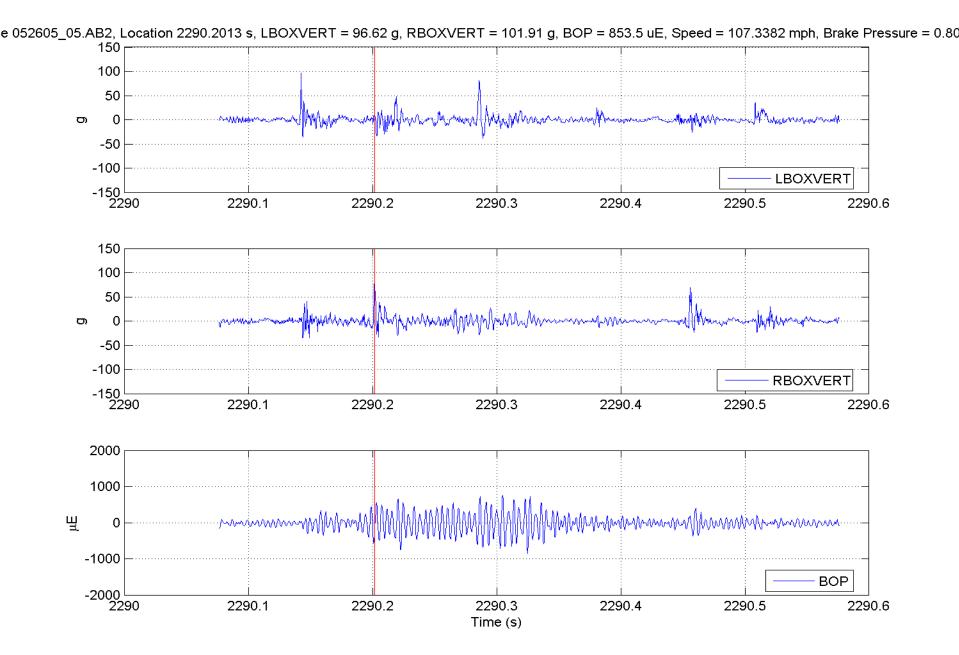
F-130

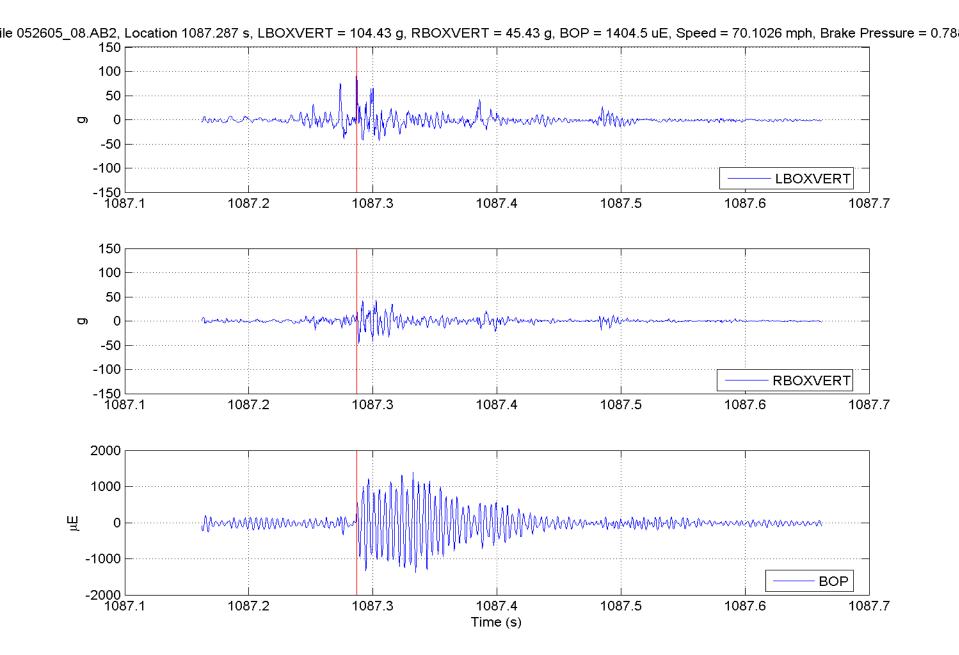


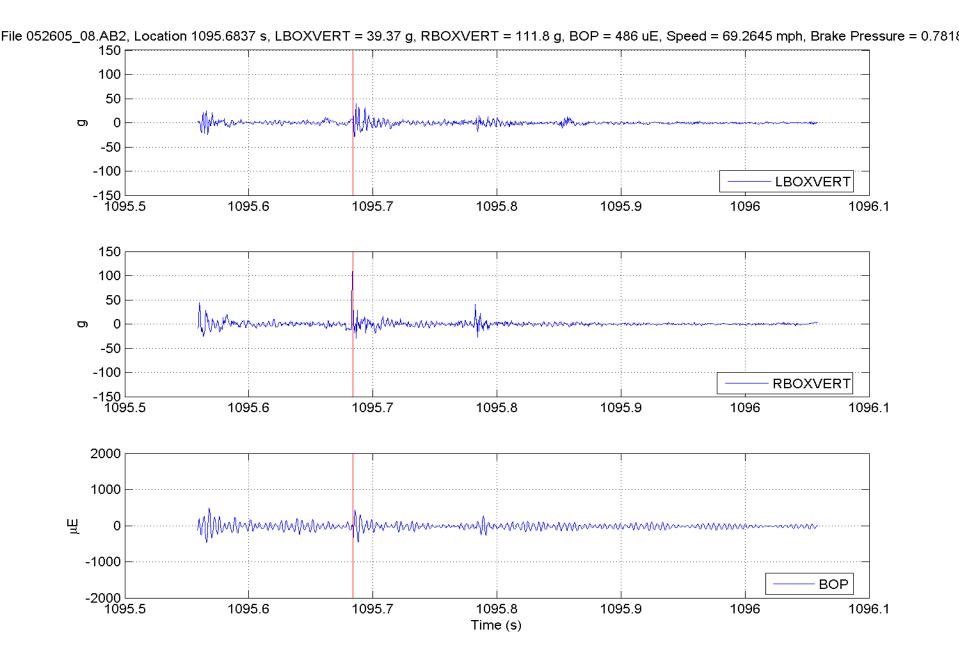
F-131

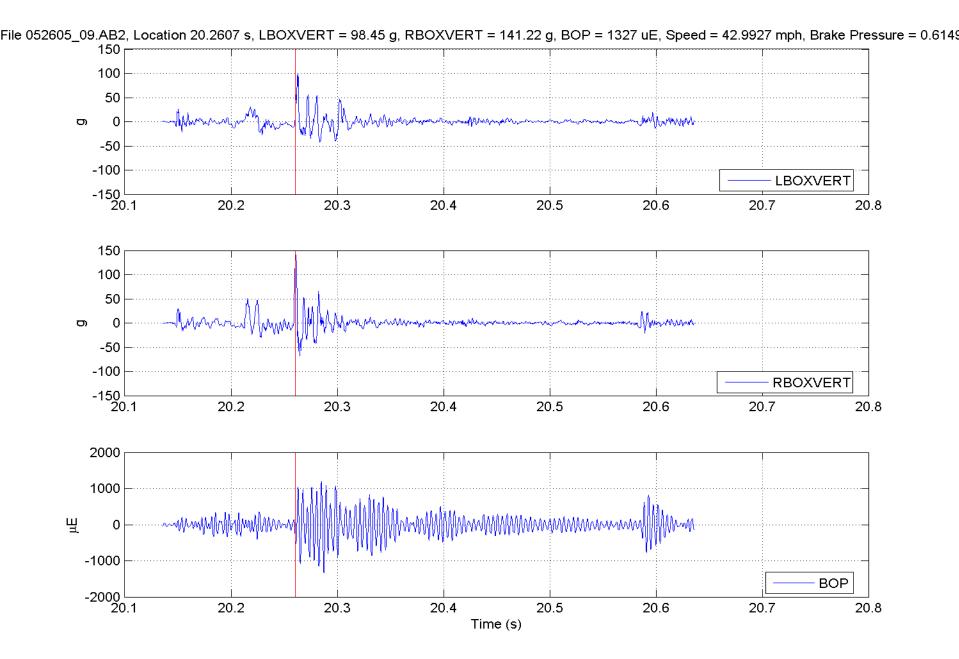


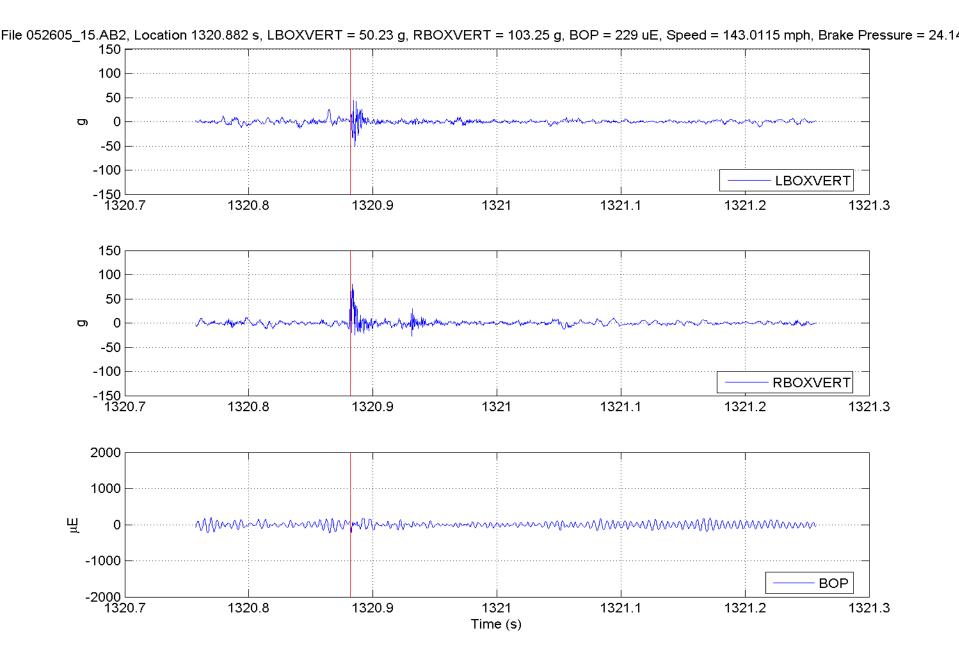
F-132

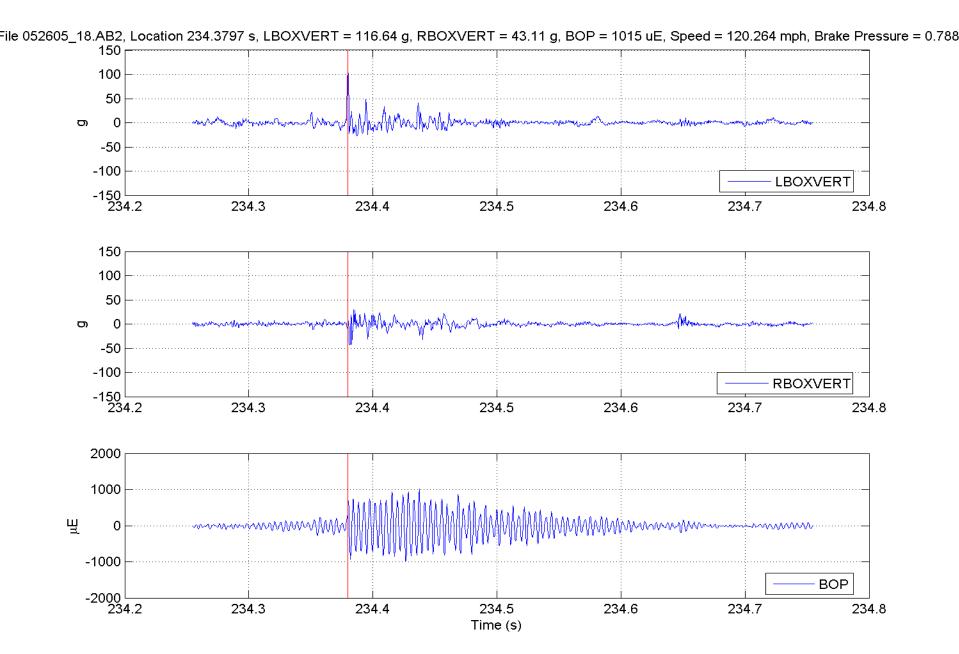

F-133

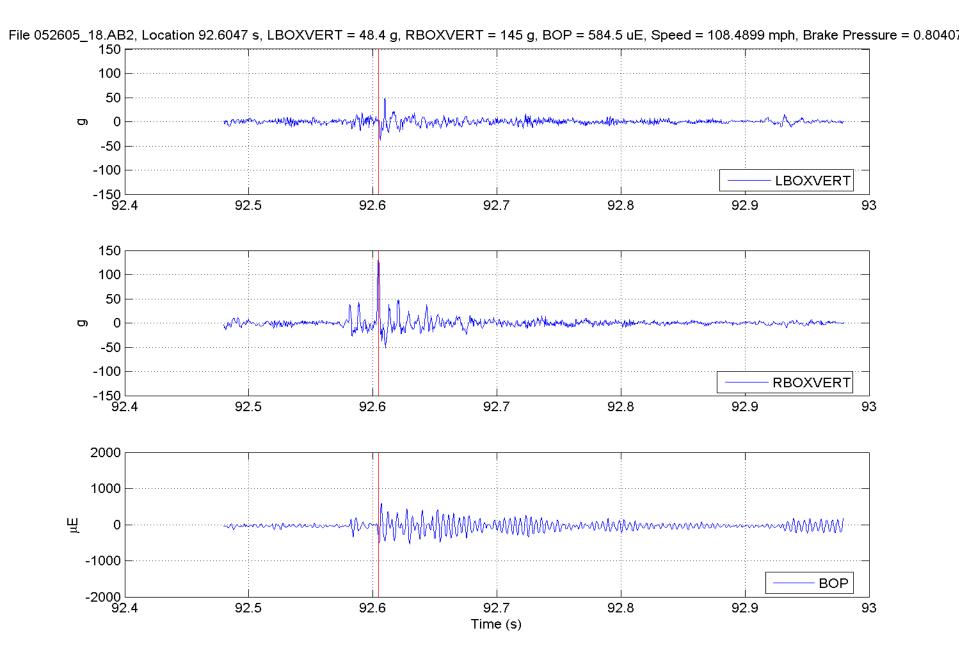

F-134


F-135

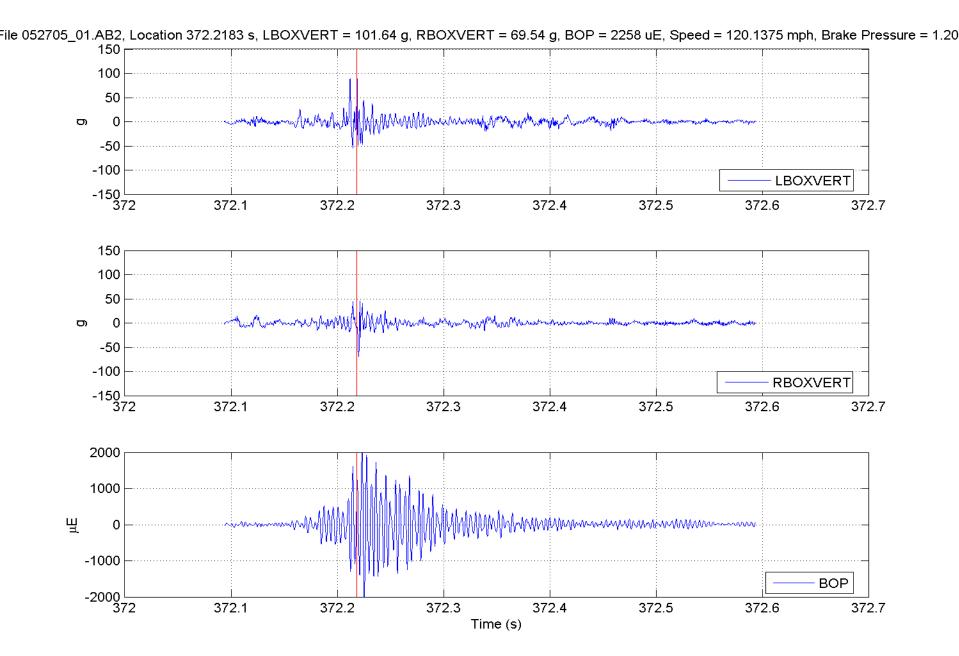

F-136


F-137

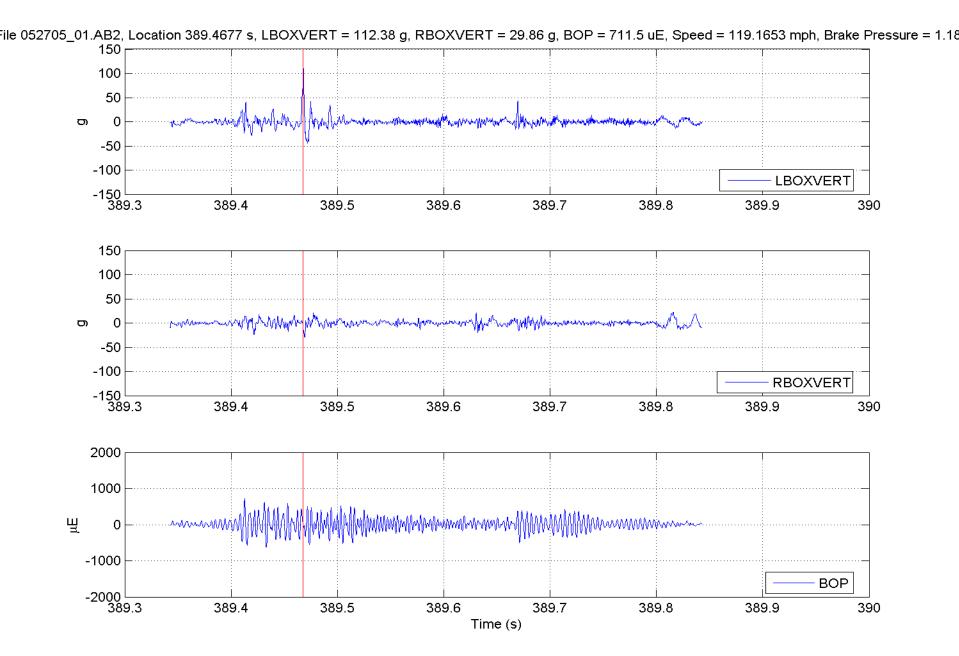

F-138


F-139

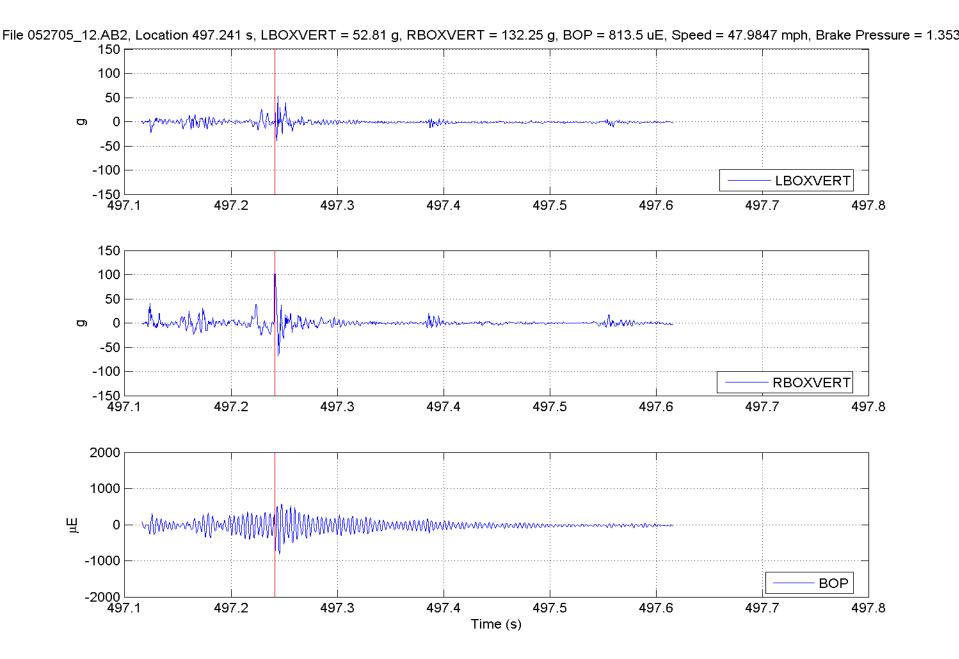
F-140

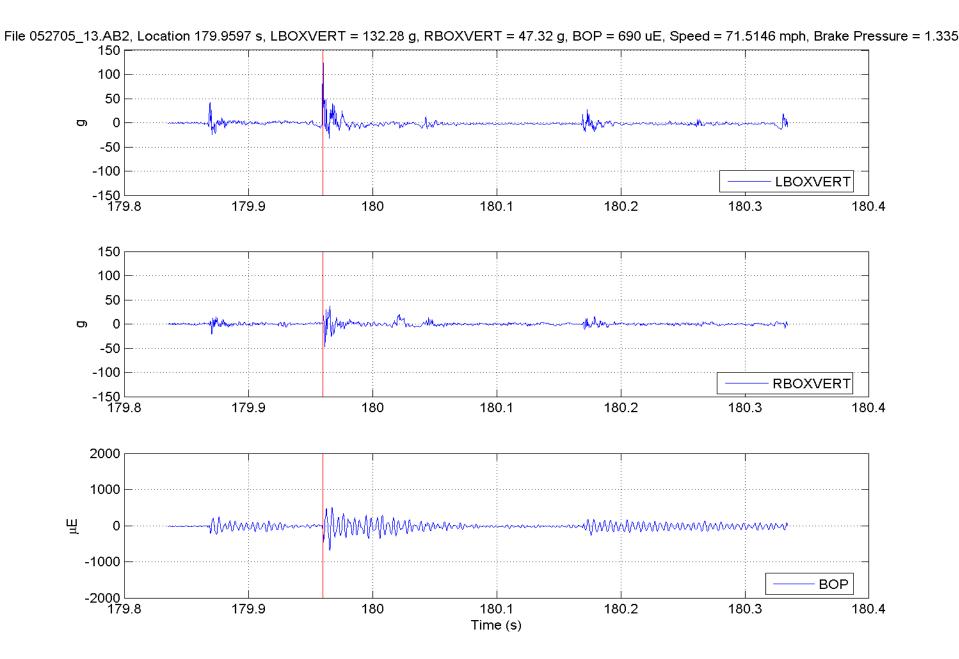


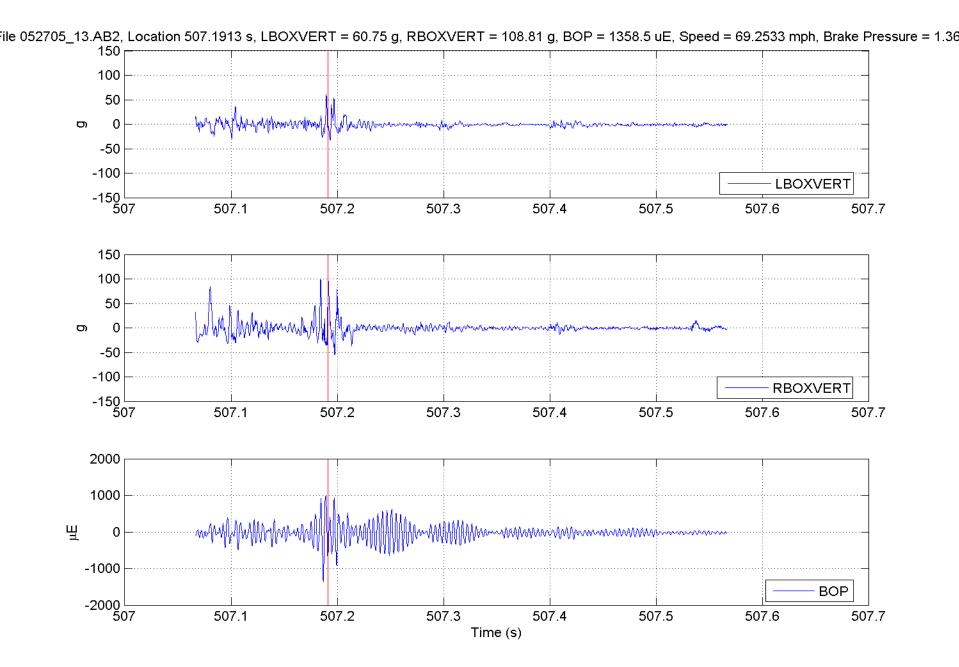
F-141

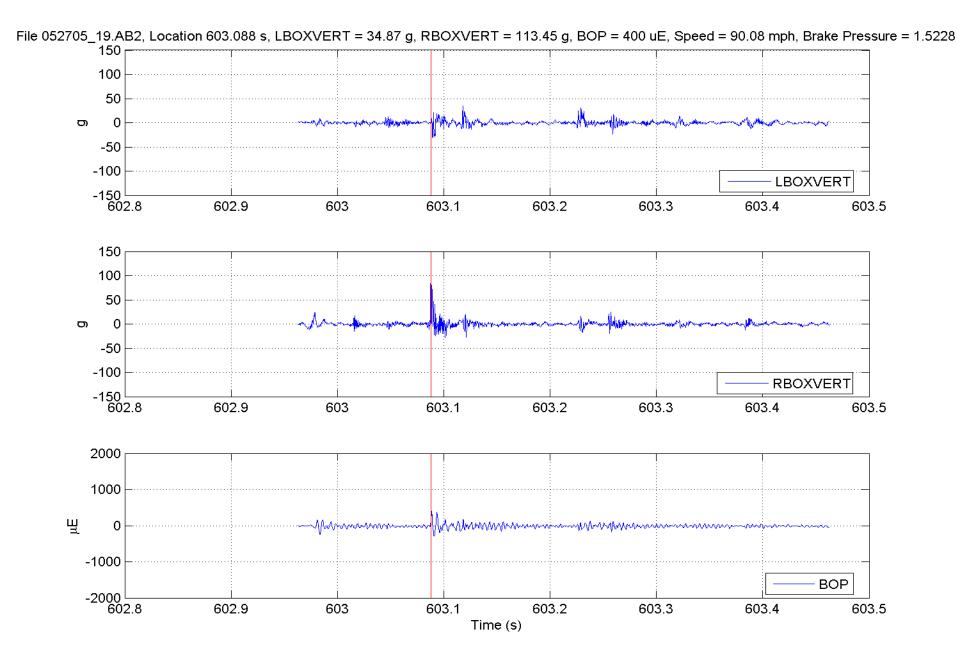


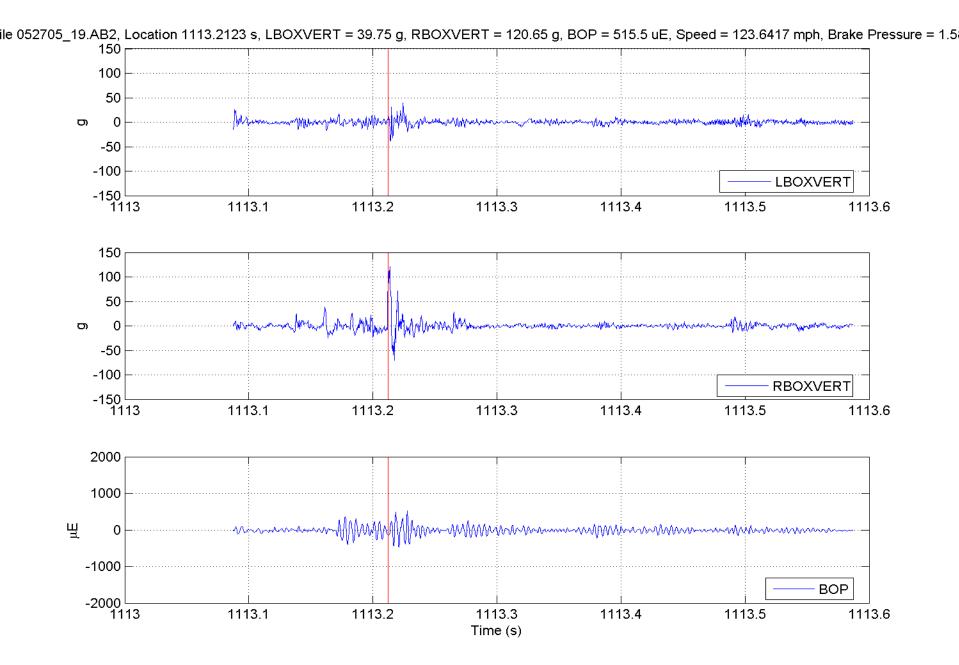
F-142

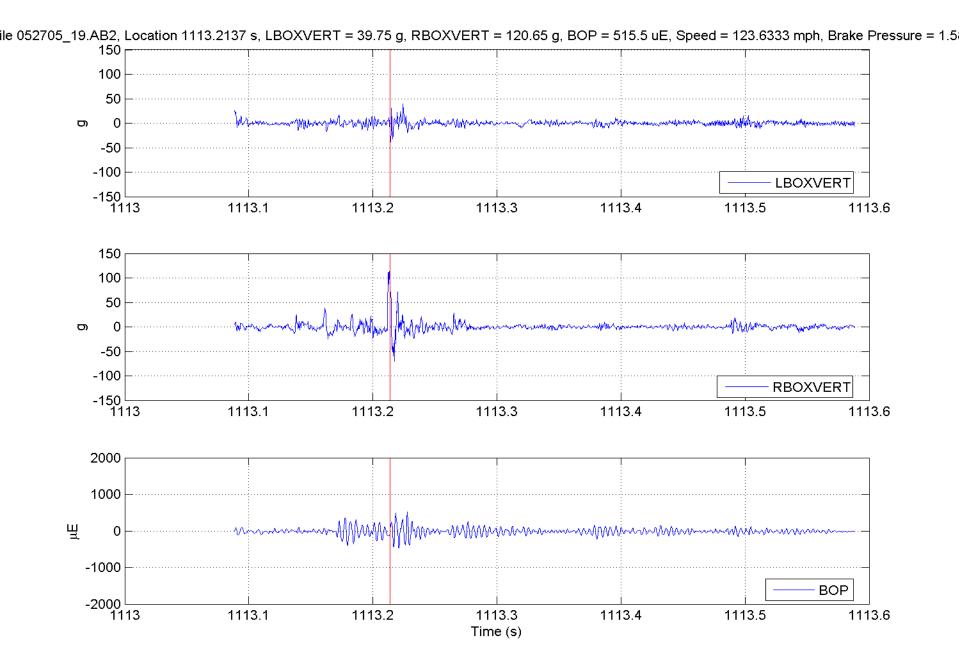

Day 4-May 27, 2005

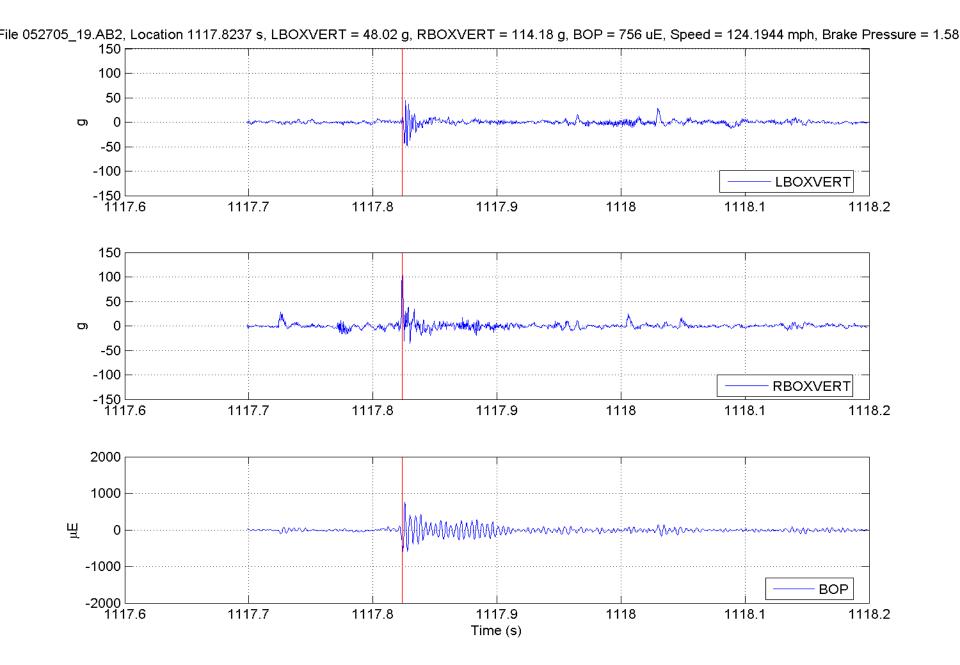

F-144

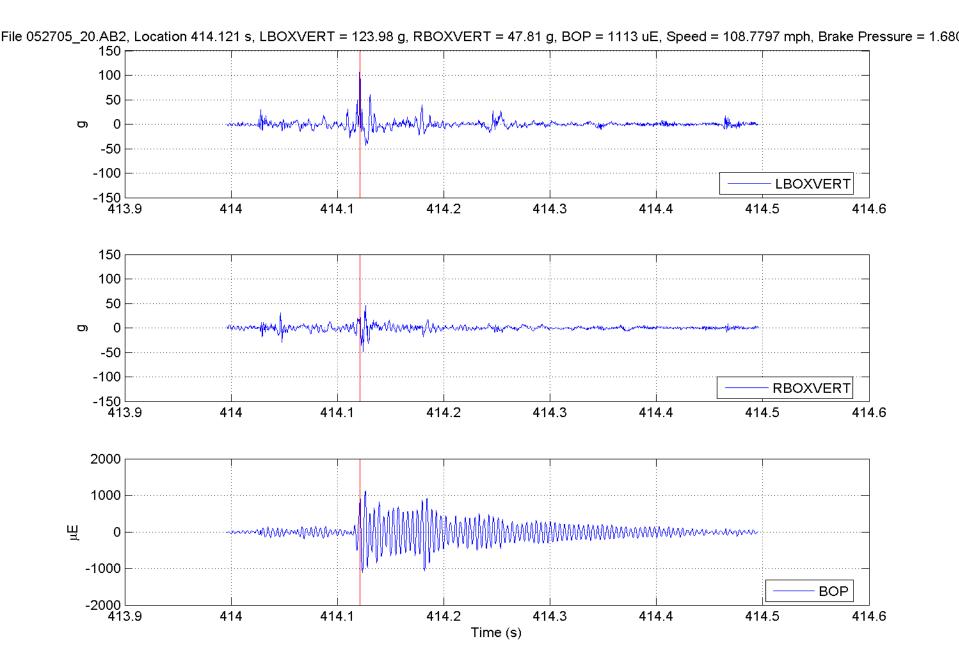

F-145

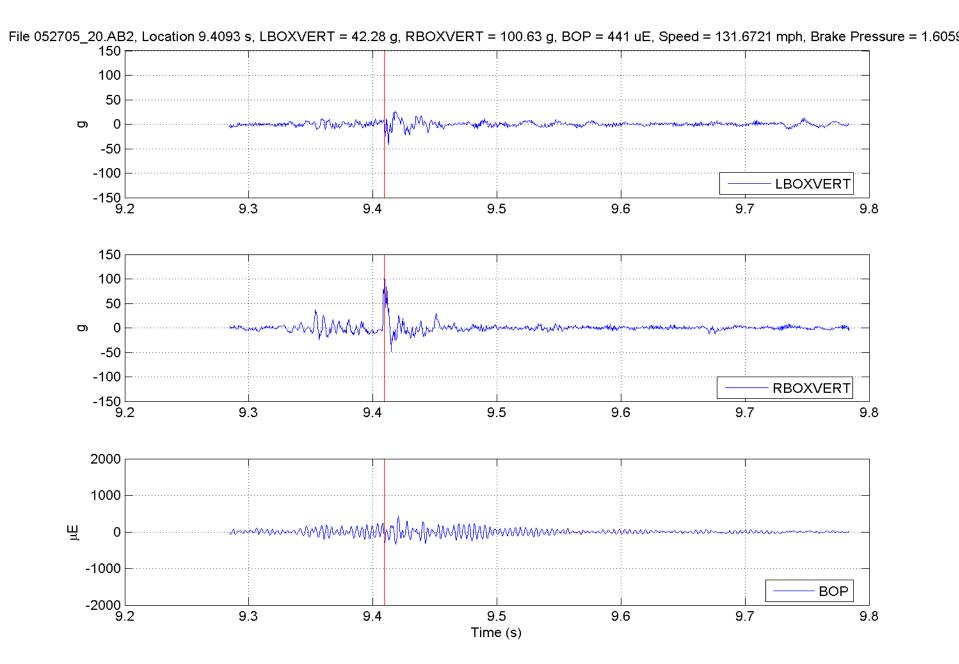

F-146

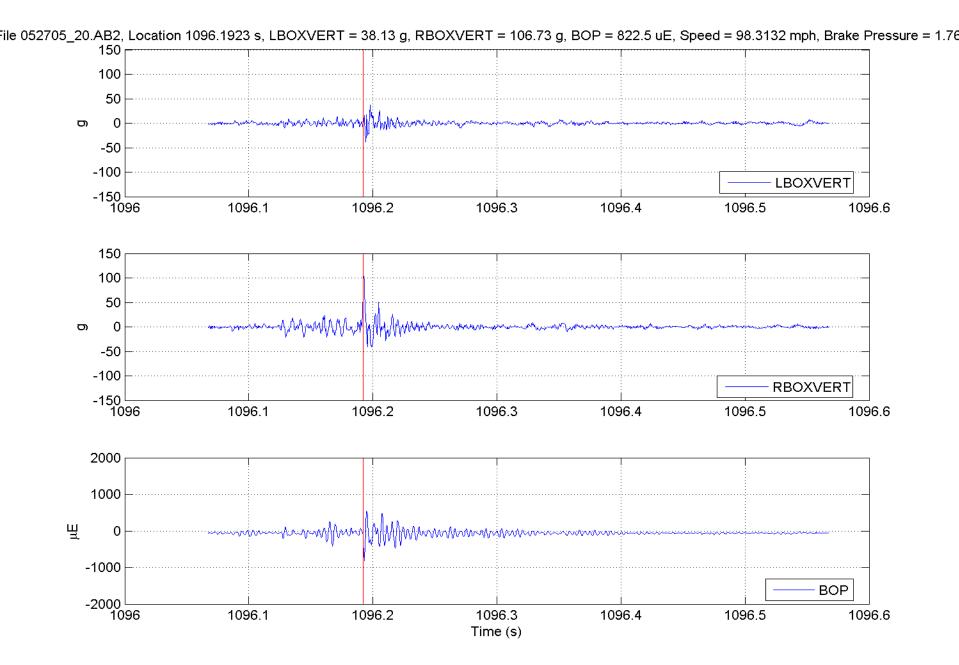

F-147


F-148

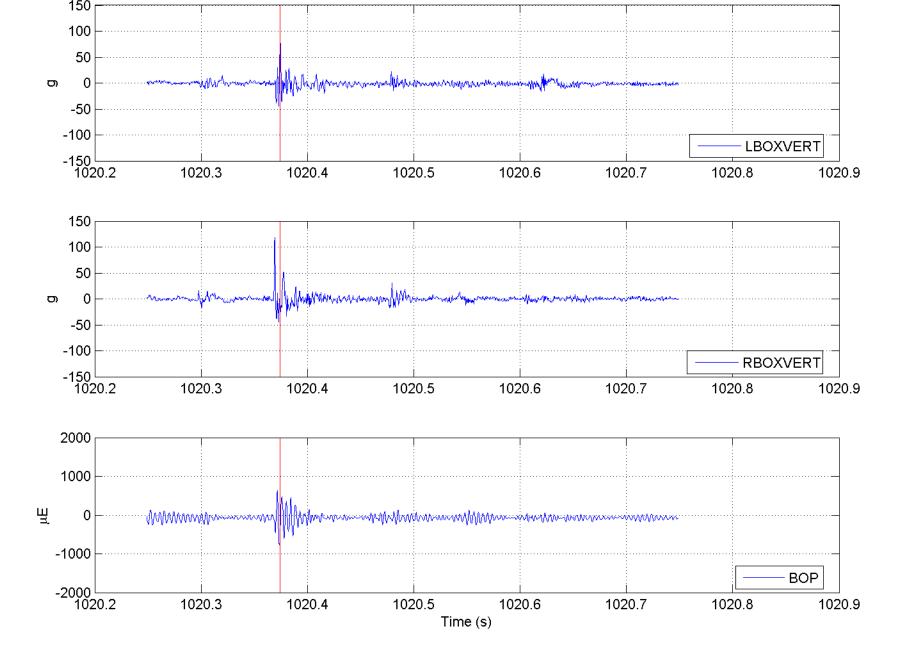

F-149

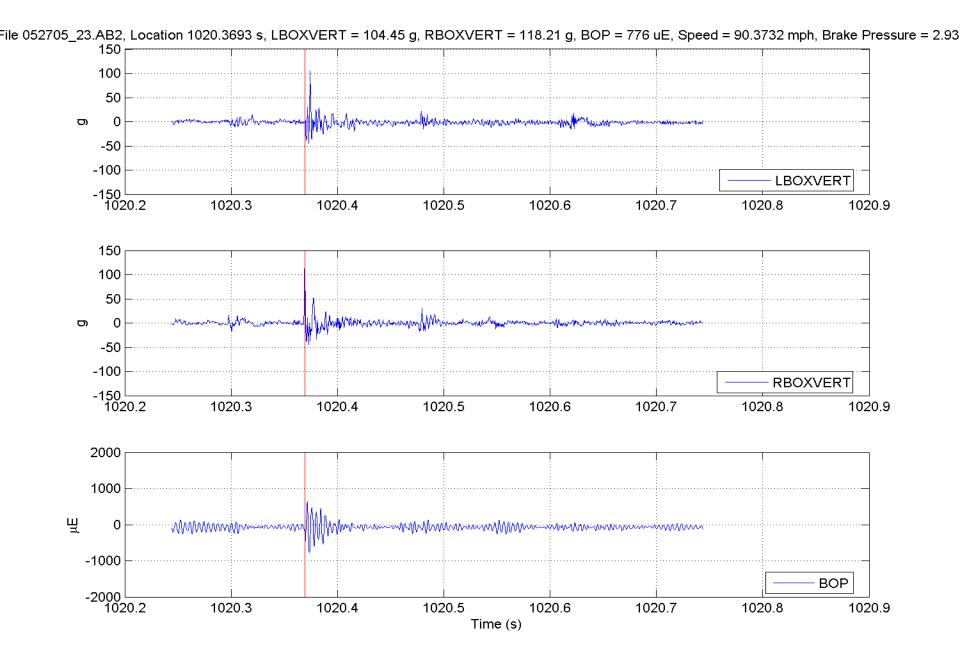

F-150


F-151


F-152

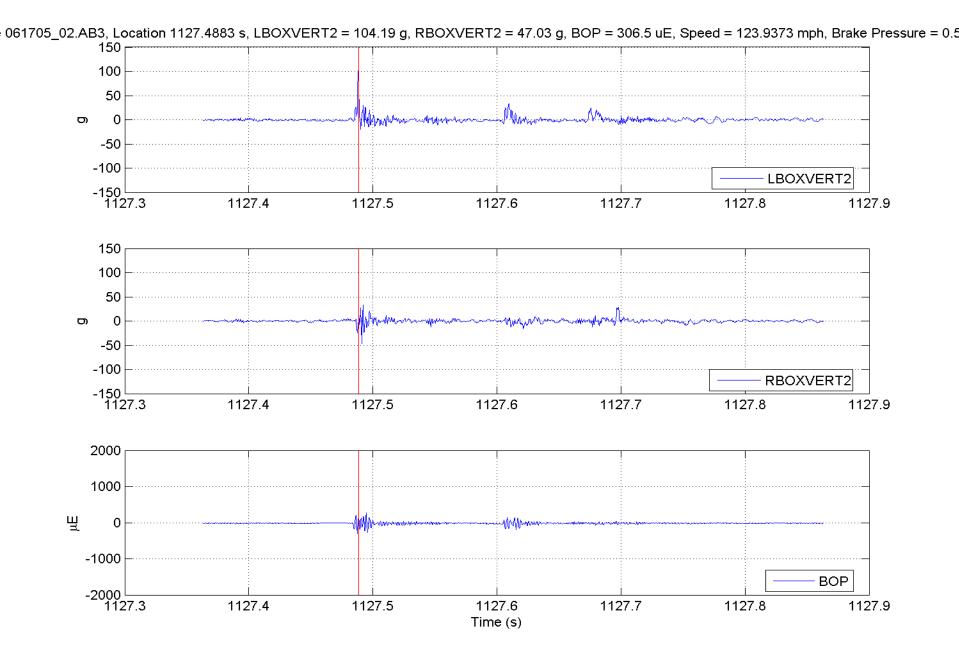
F-153


F-154

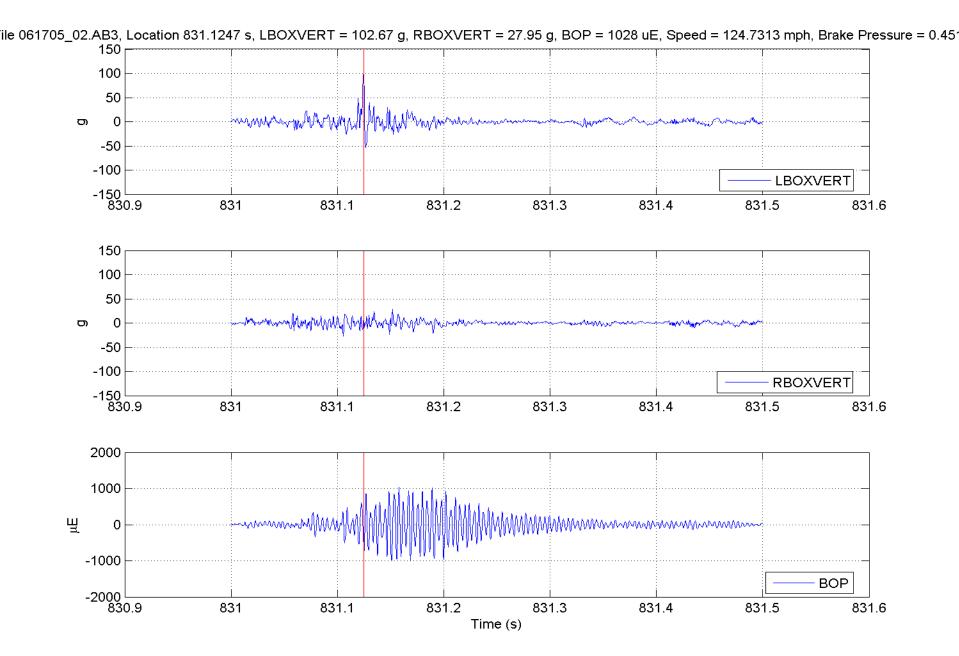

F-155

File 052705_22.AB2, Location 599.5393 s, LBOXVERT = 39.11 g, RBOXVERT = 105.63 g, BOP = 413 uE, Speed = 109.7164 mph, Brake Pressure = 2.656 100 50 D -50 -100 **LBOXVERT** -150 <u>599.3</u> 599.4 599.5 599.6 599.7 599.8 599.9 600 150 100 50 D -50 -100 **RBOXVERT** -150 L 599.3 599.4 599.5 599.6 599.8 599.9 599.7 600 2000 1000 끸 -1000 BOP -2000 L 599.3 599.4 599.5 599.6 599.7 599.9 599.8 600 Time (s)

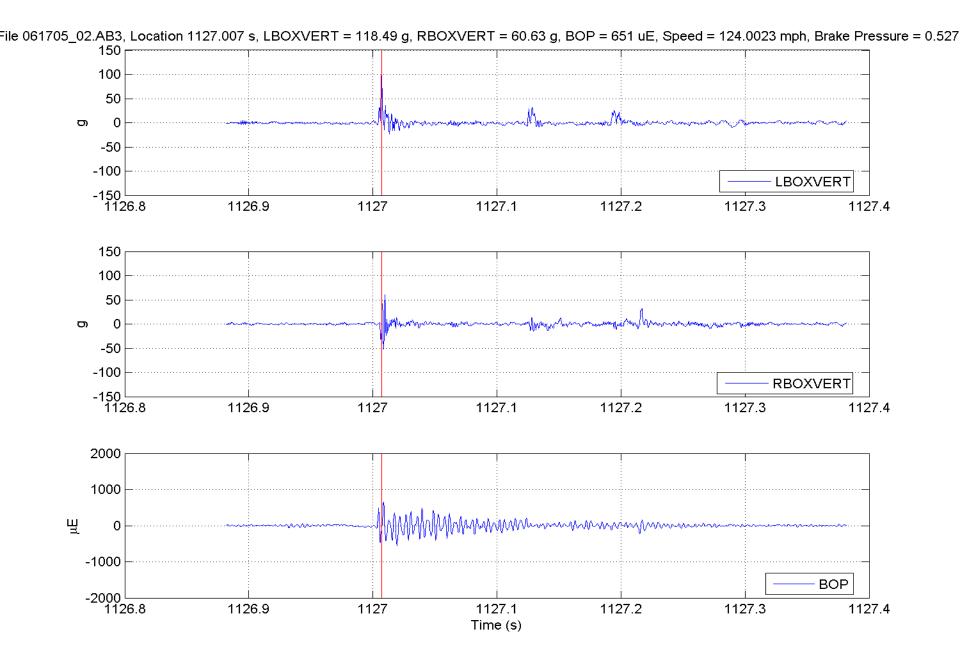
F-156

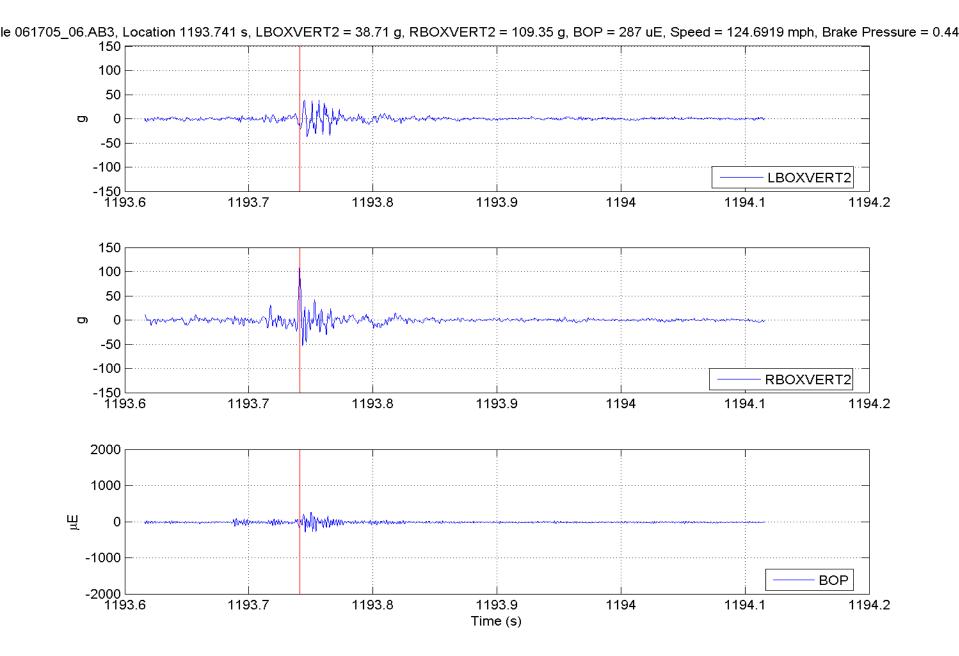


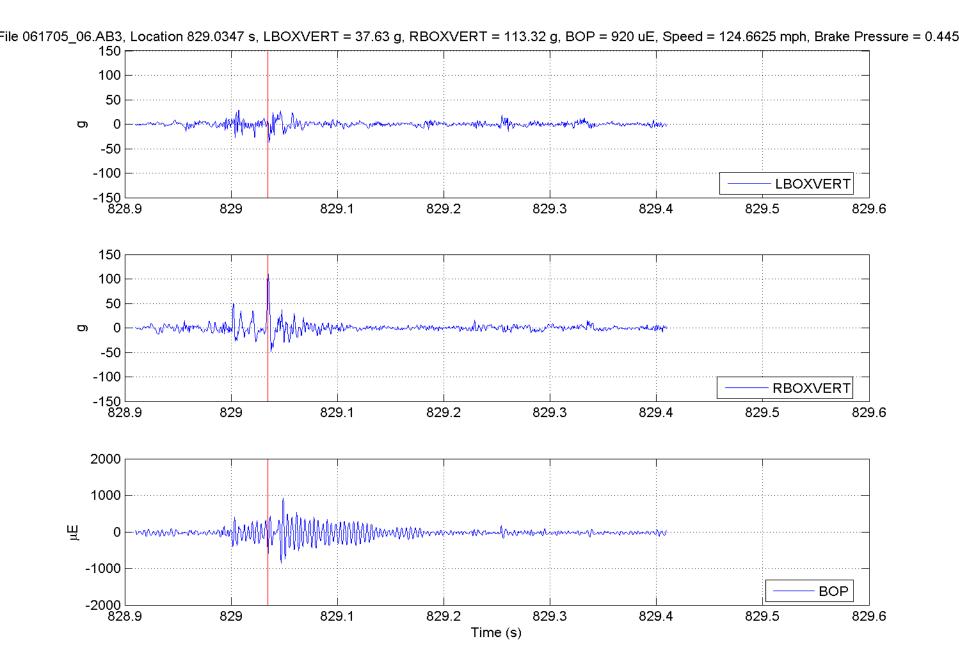
F-157

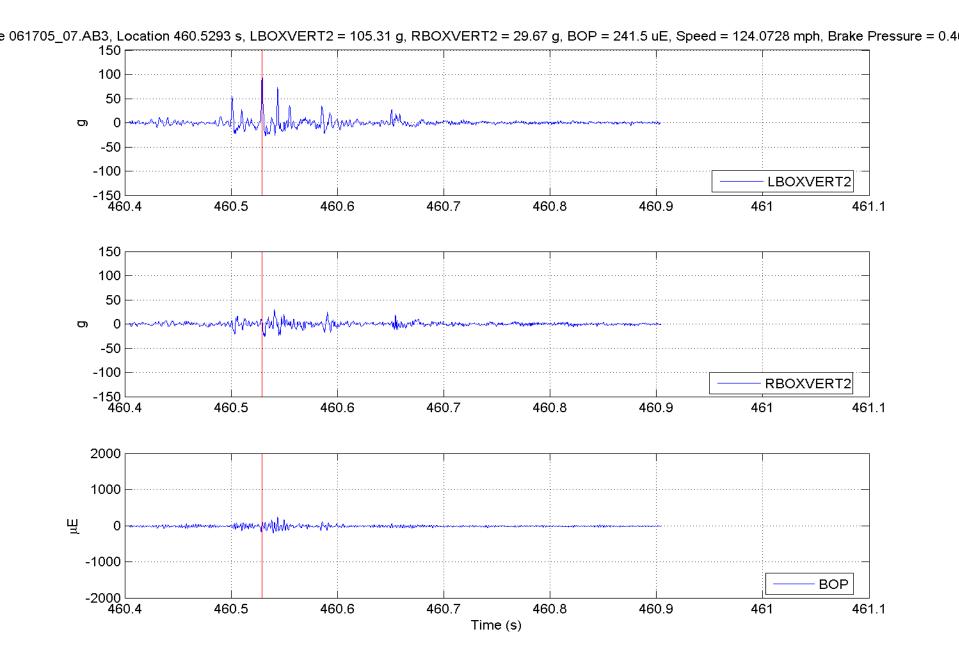


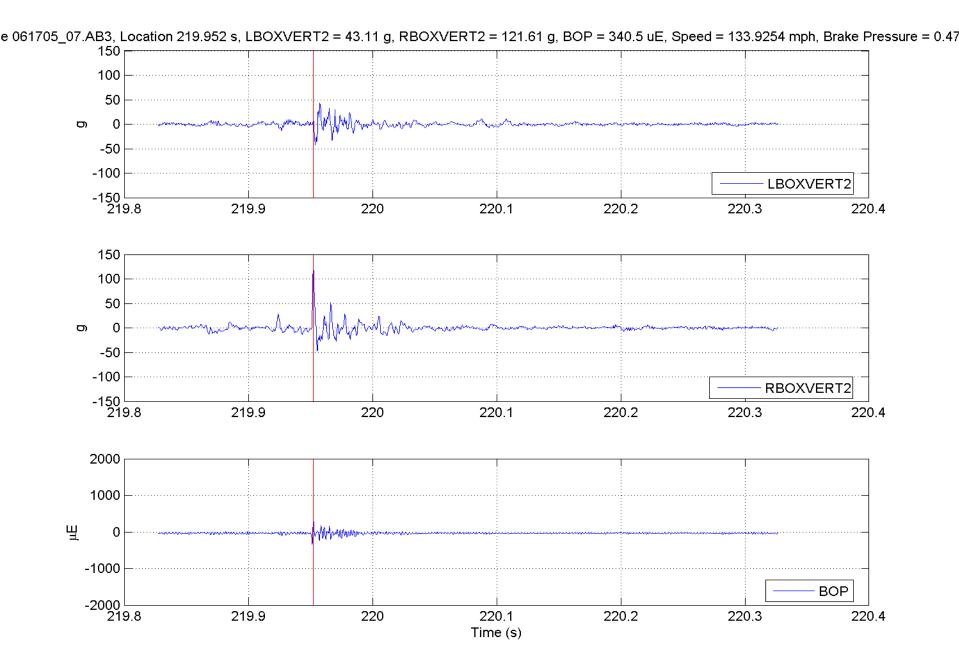
F-158

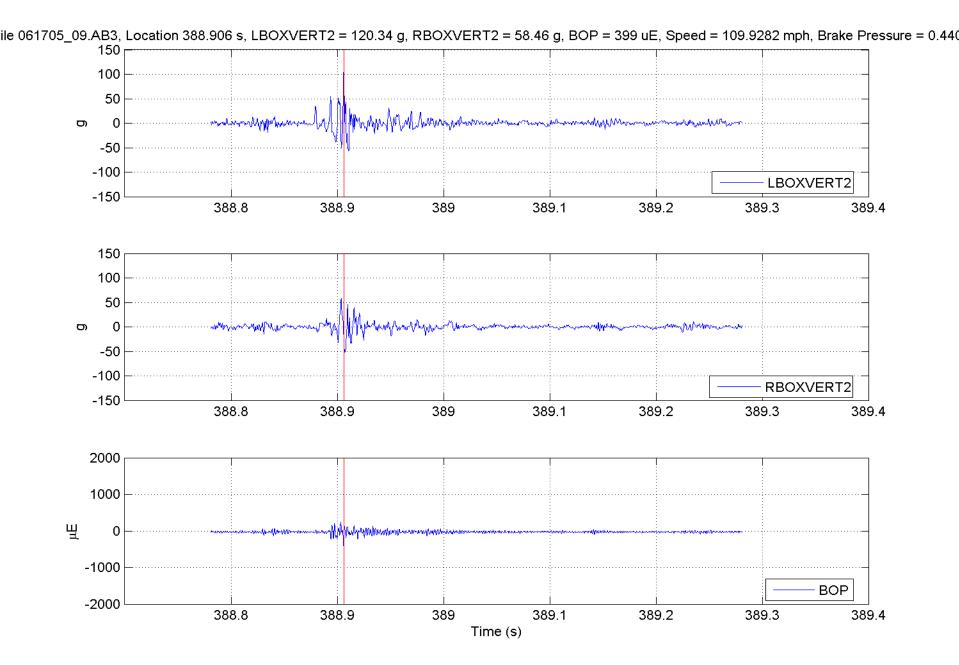

Day 6-June 17, 2005

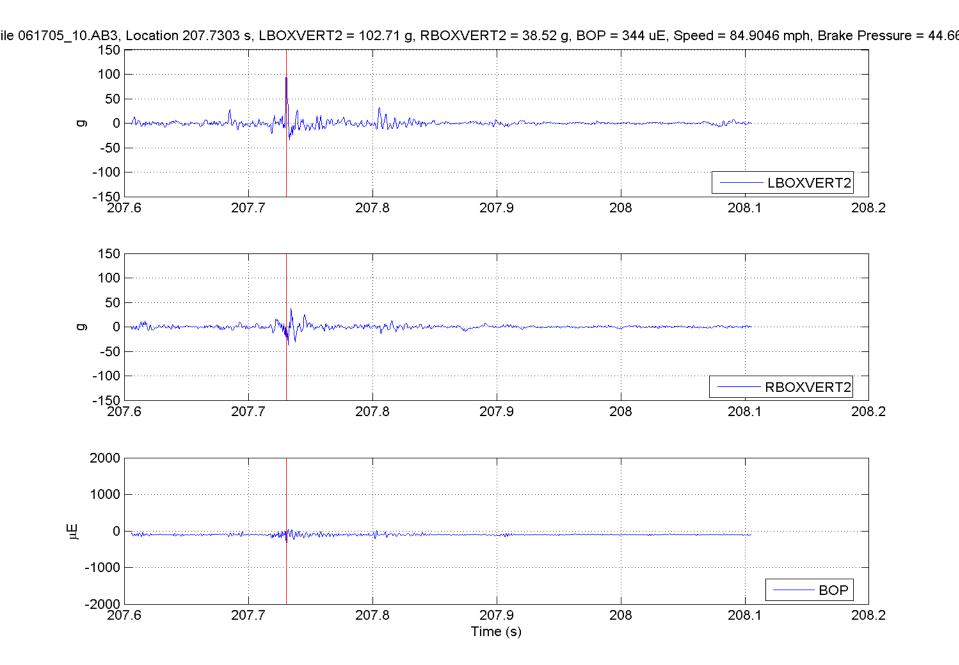

F-160

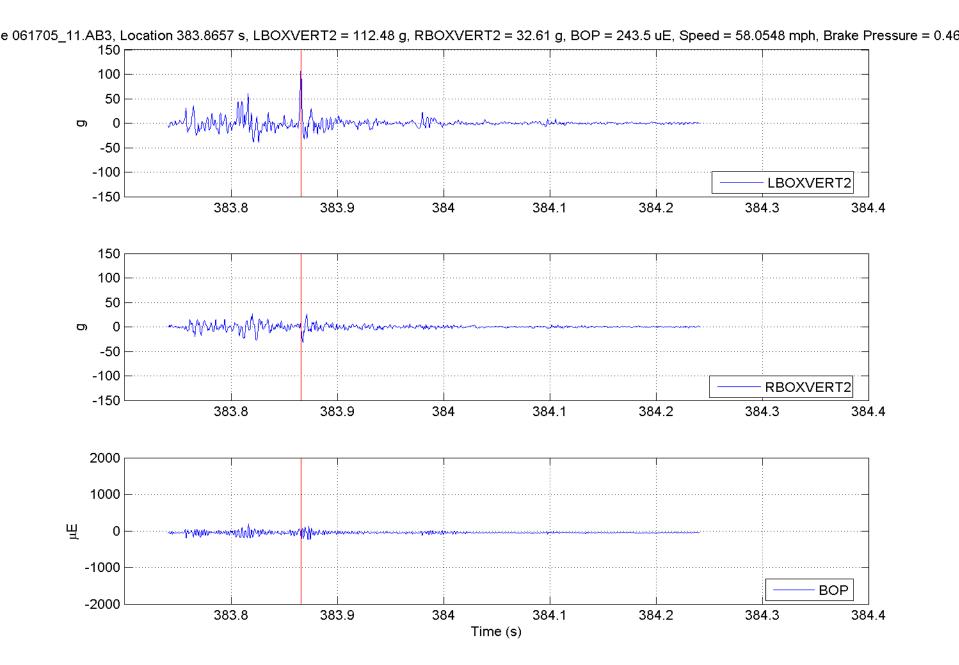

F-161

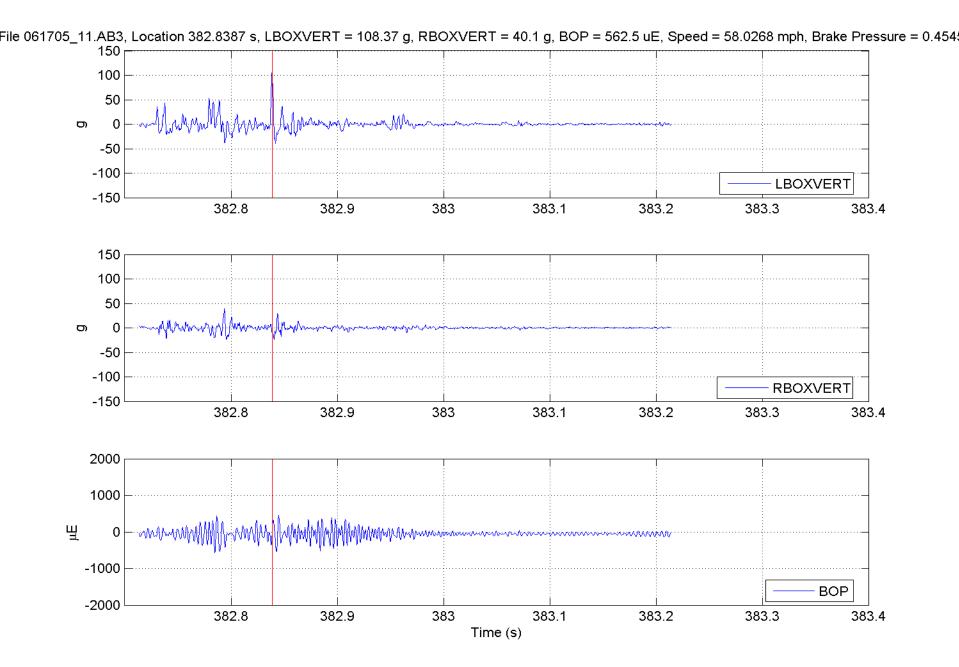

F-162

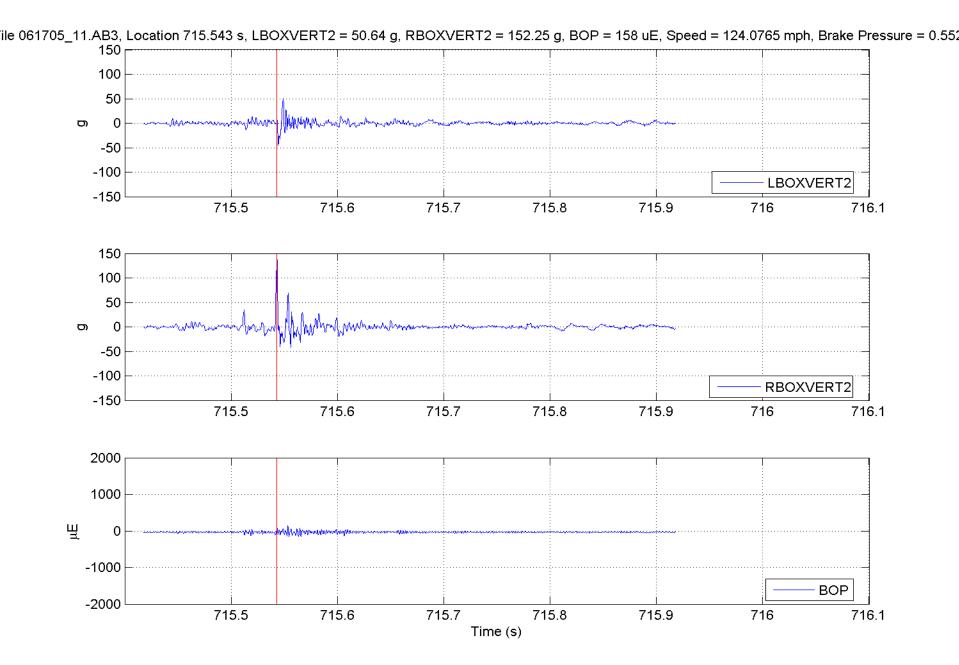

F-163

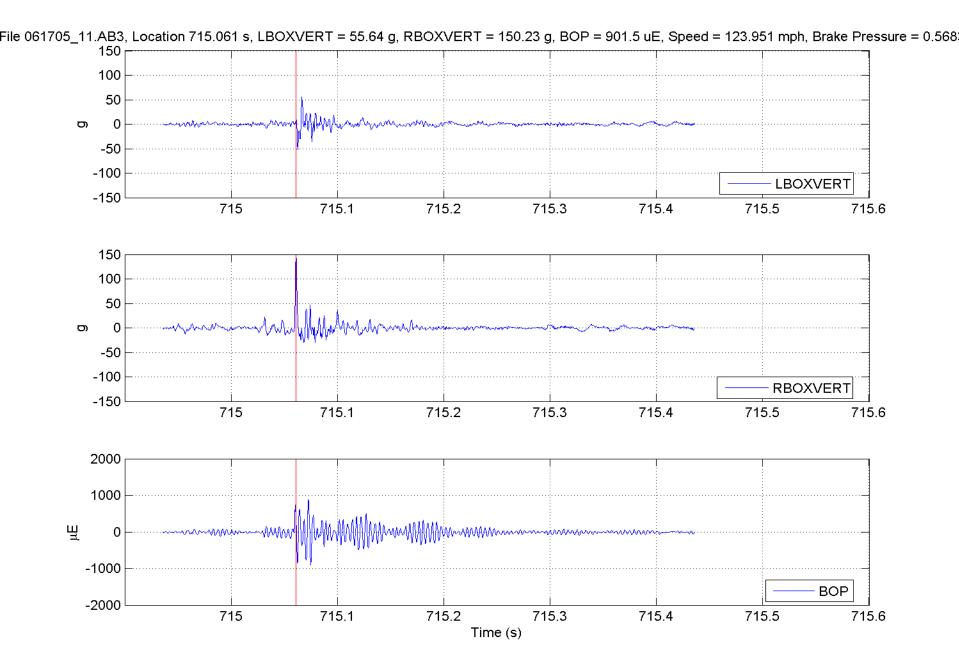

F-164

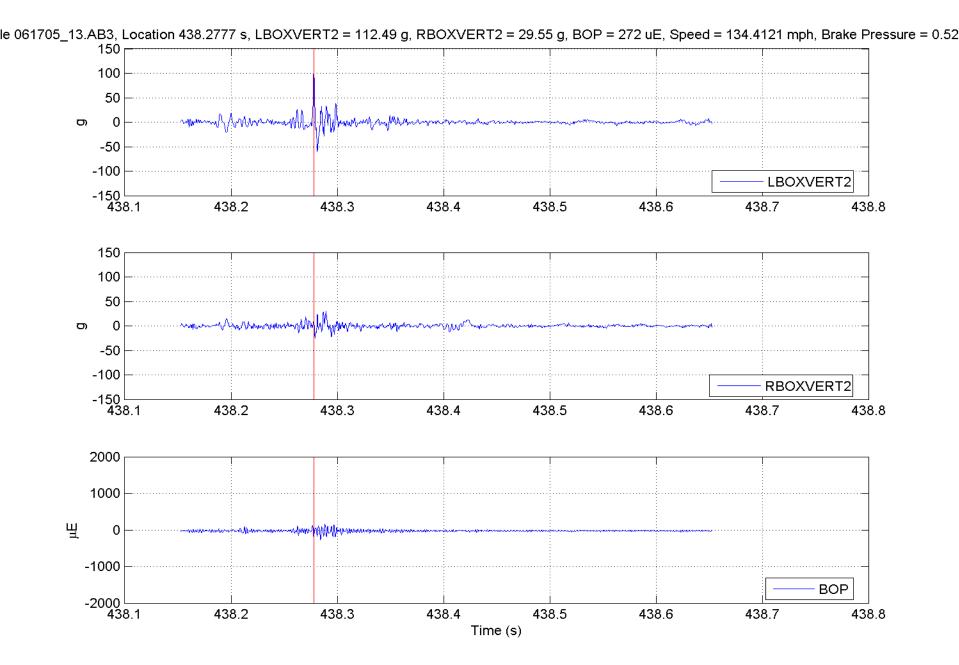

F-165

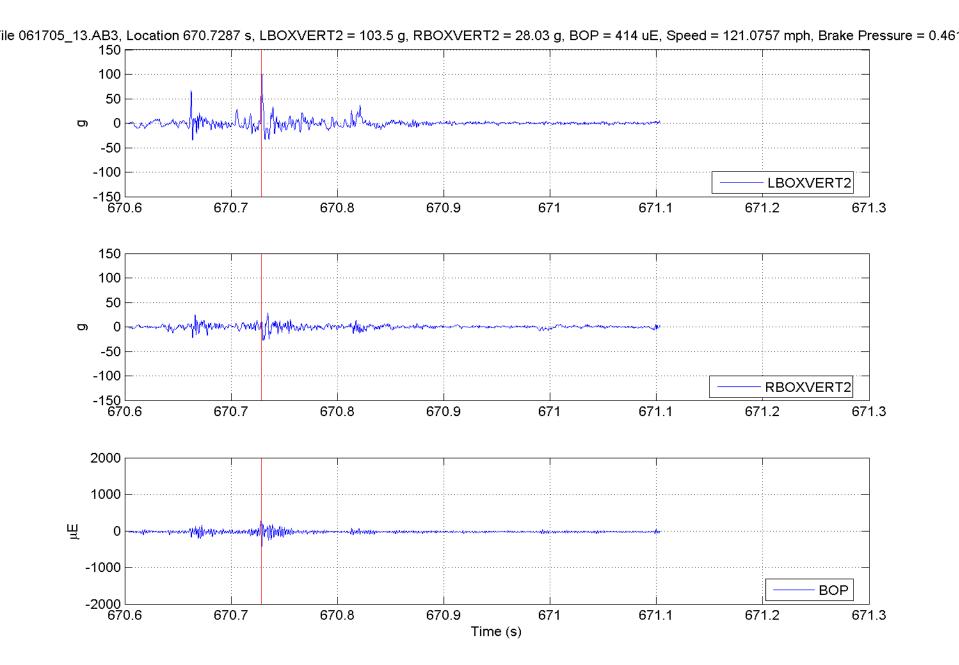

F-166

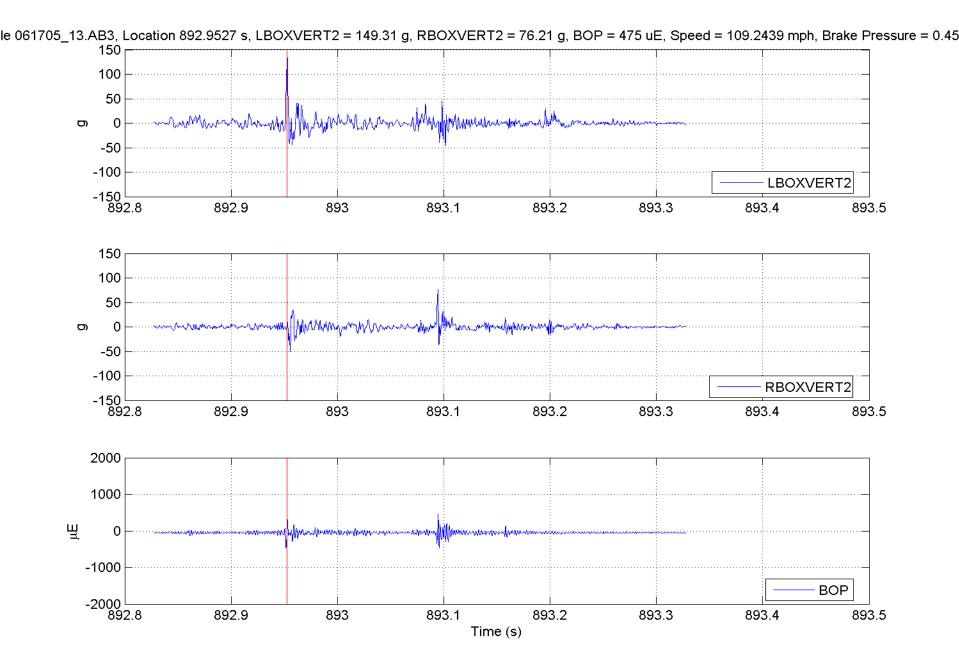

F-167

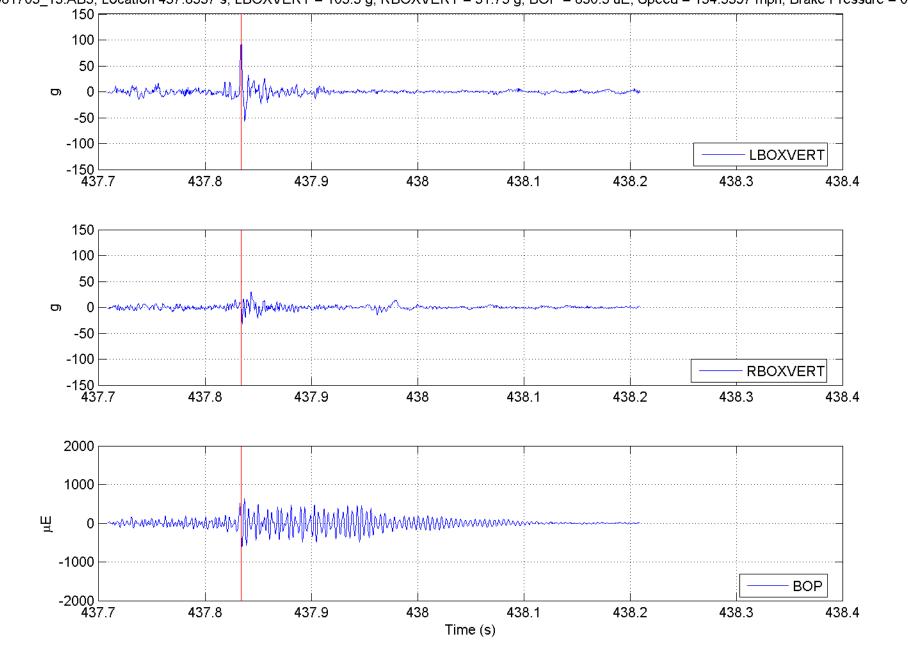

F-168

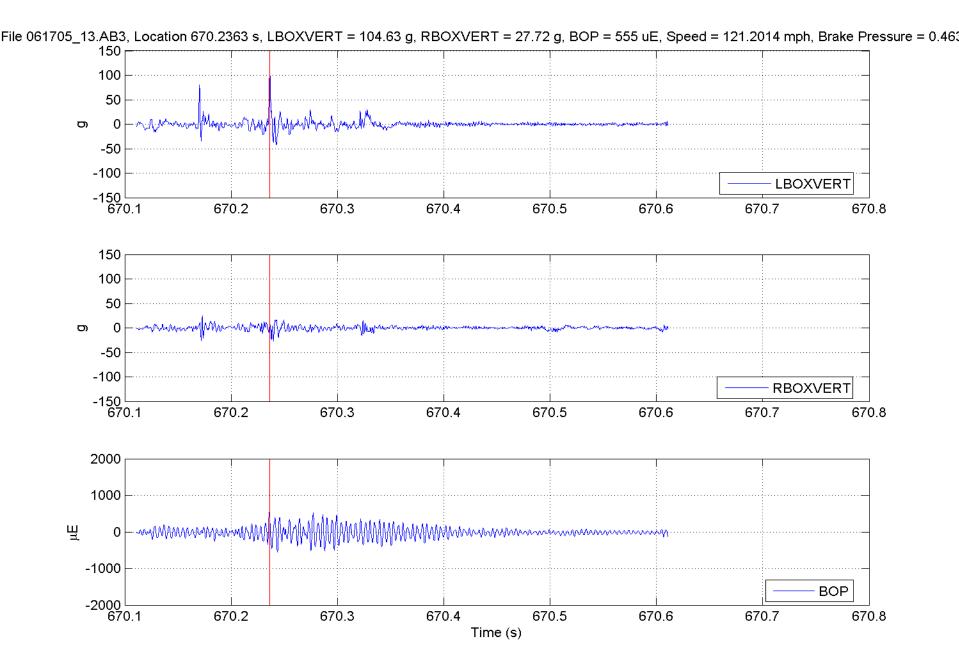

F-169

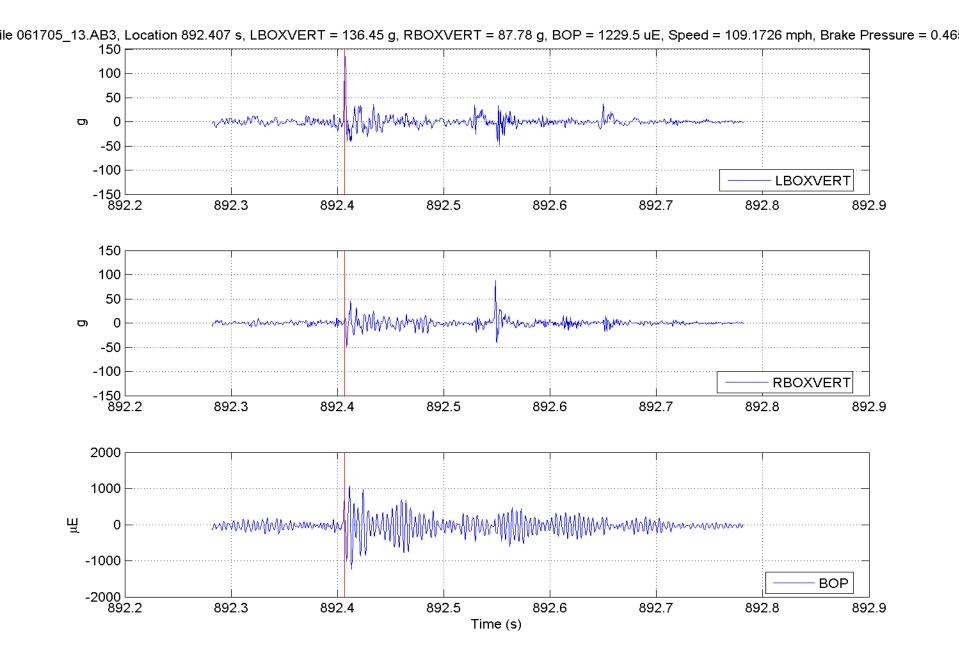

F-170

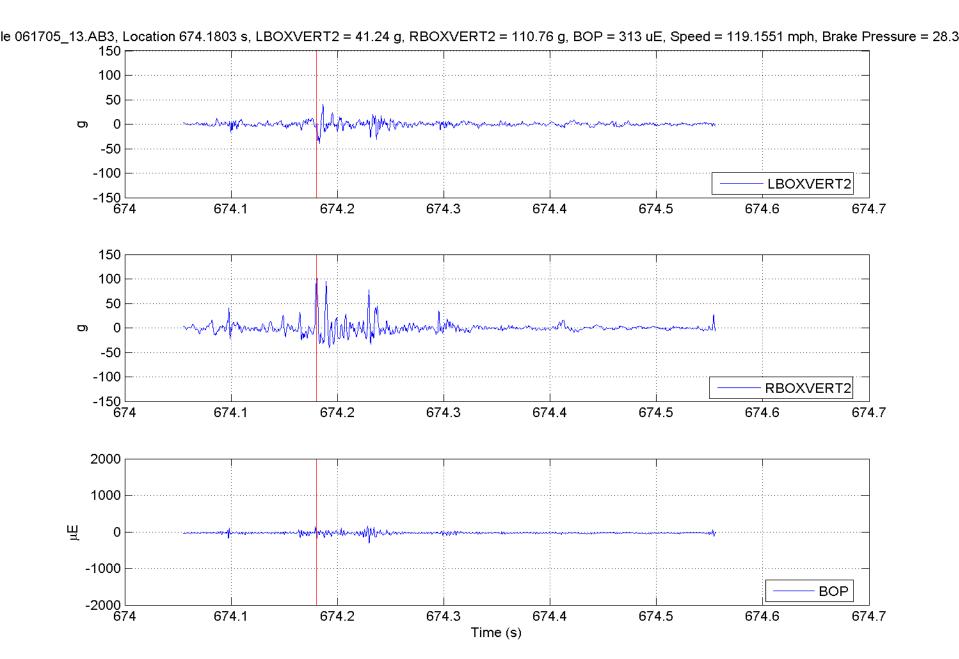

F-171

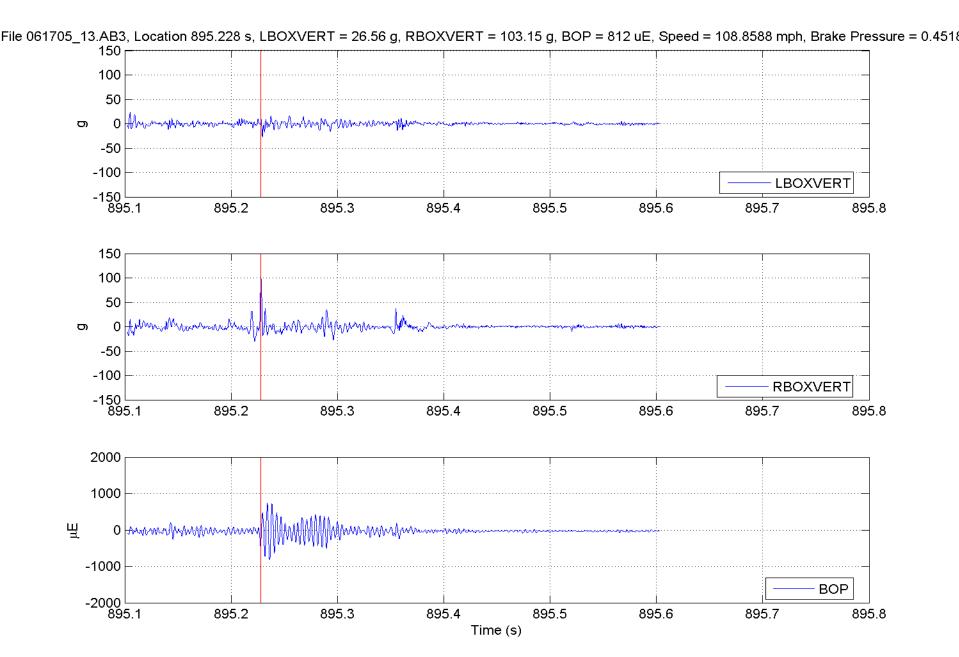

F-172

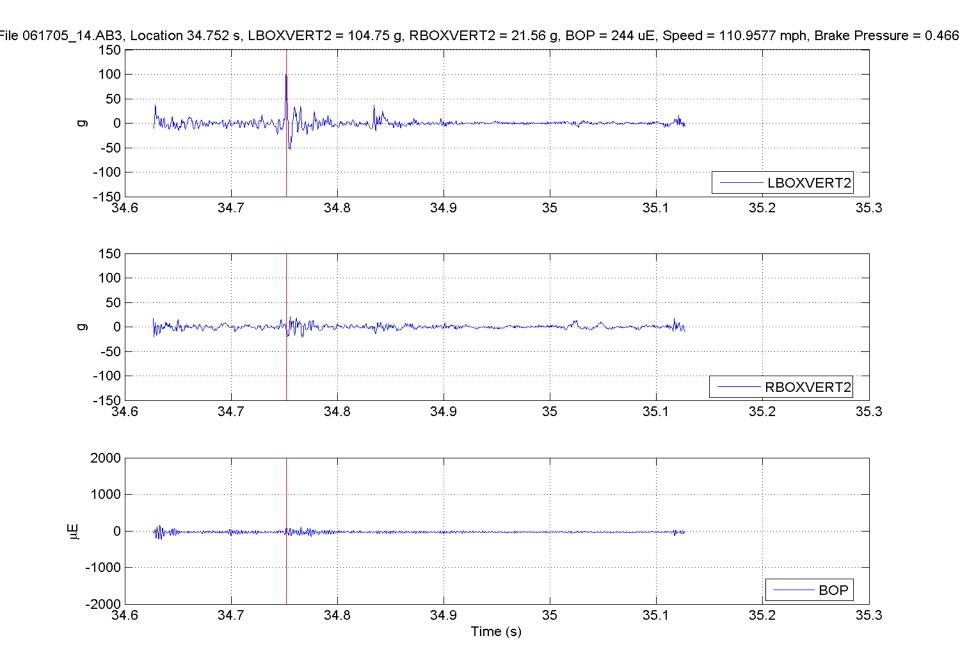

F-173

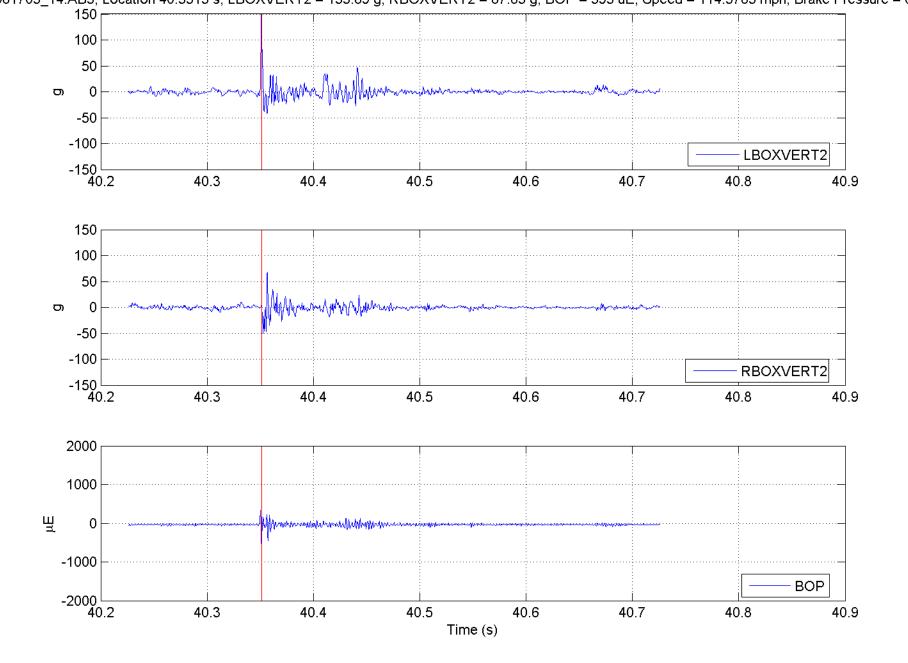

F-174

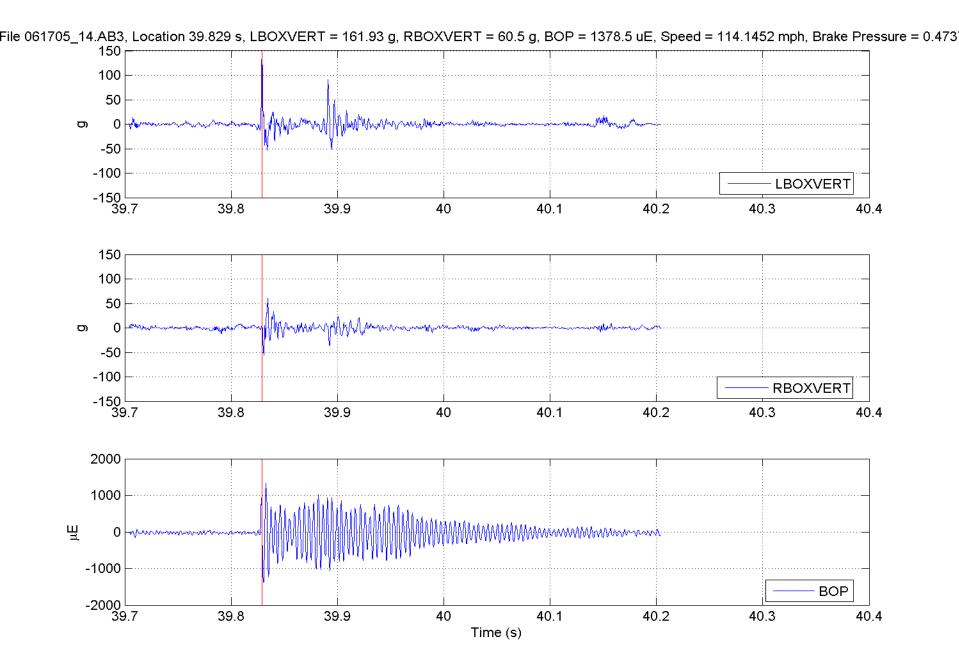

F-175


F-176

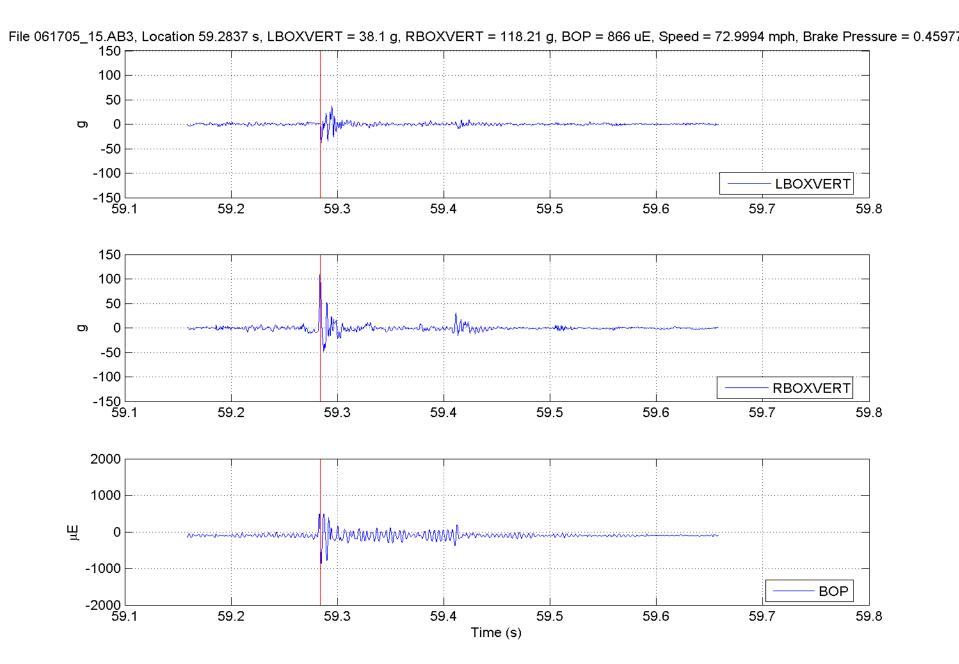

F-177


F-178

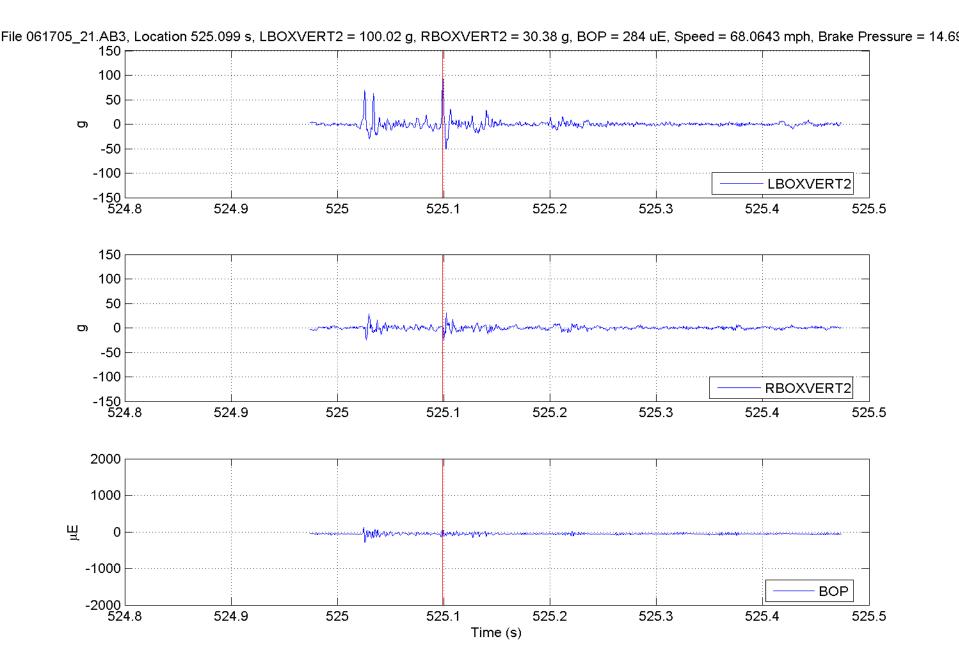

F-179


F-180

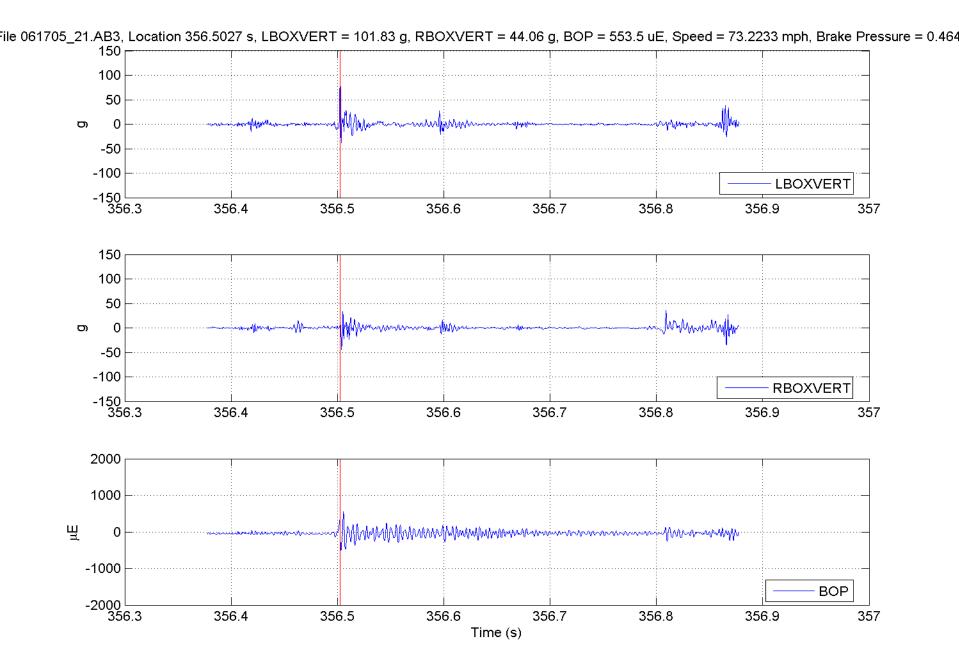
F-181

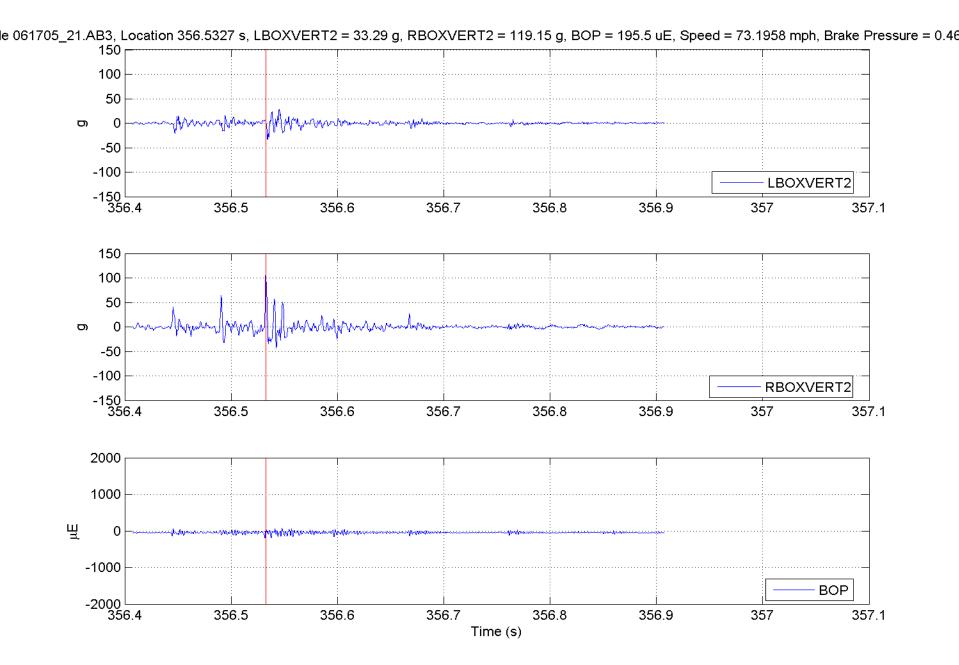


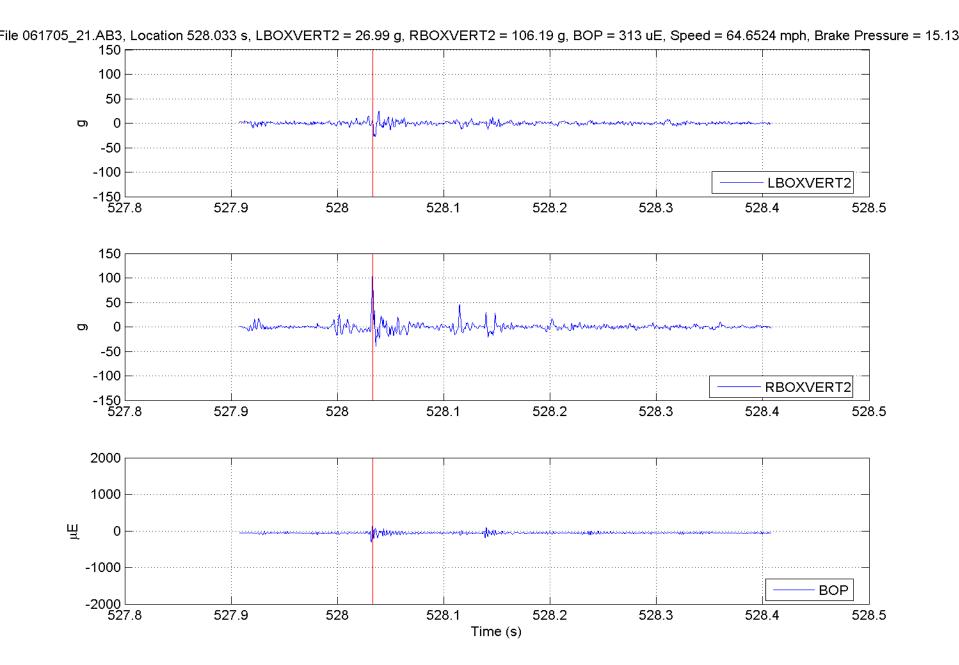
F-182

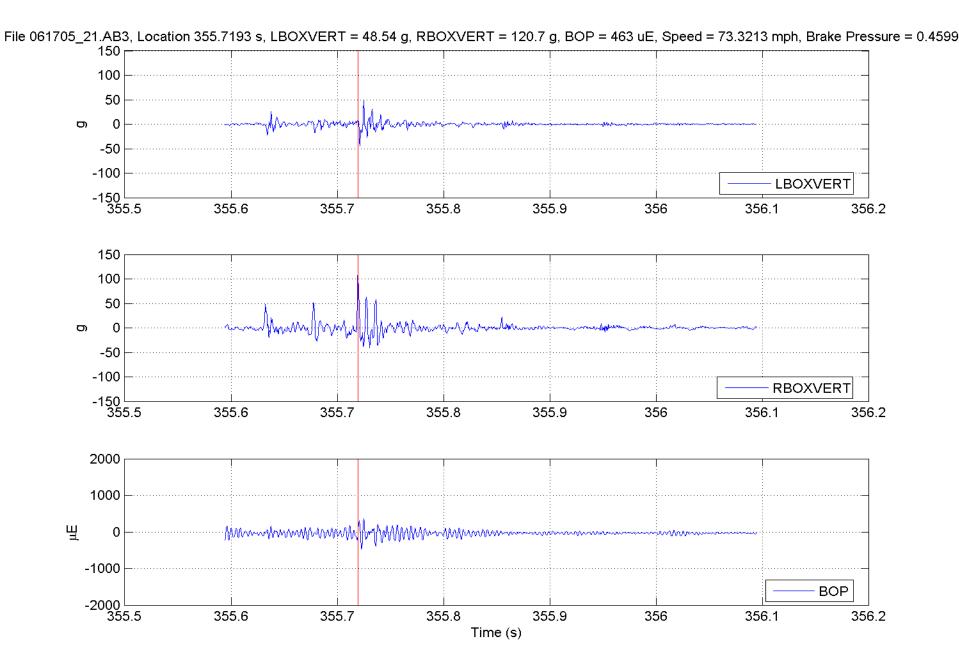


F-183

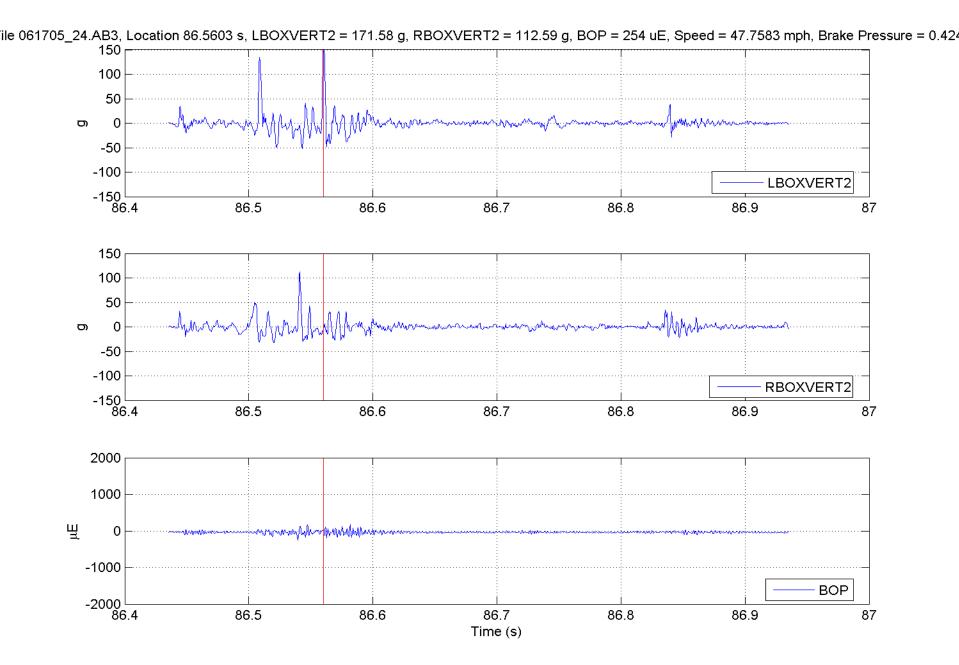

F-184


F-185

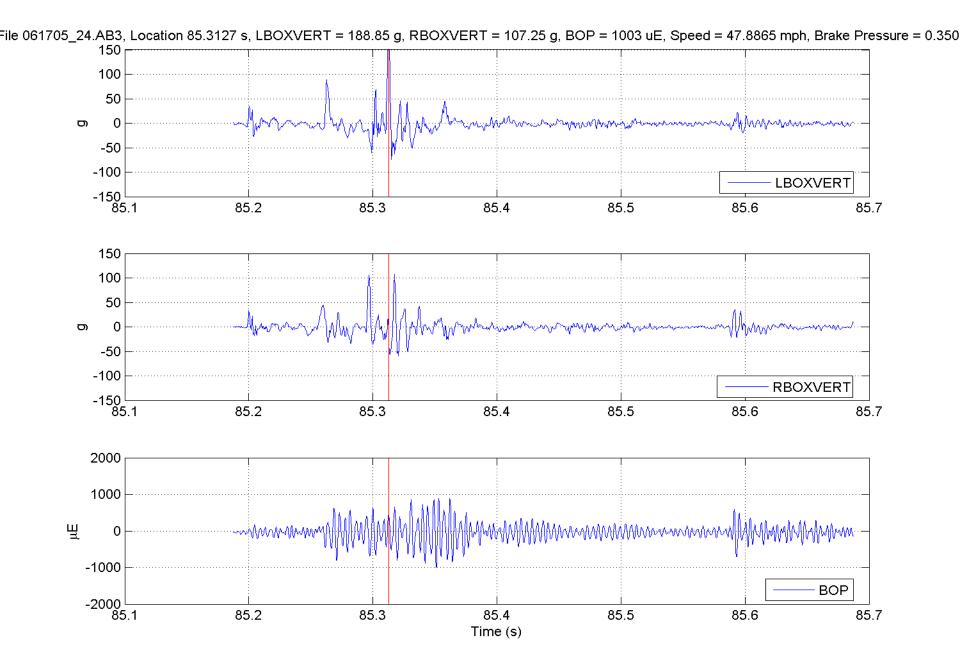

F-186


F-187

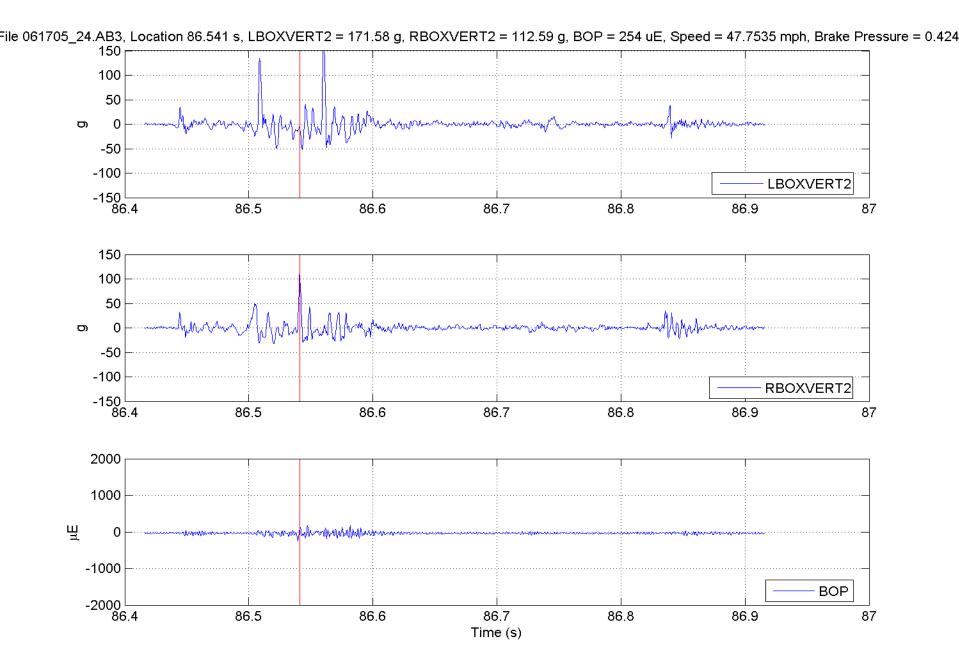
F-188



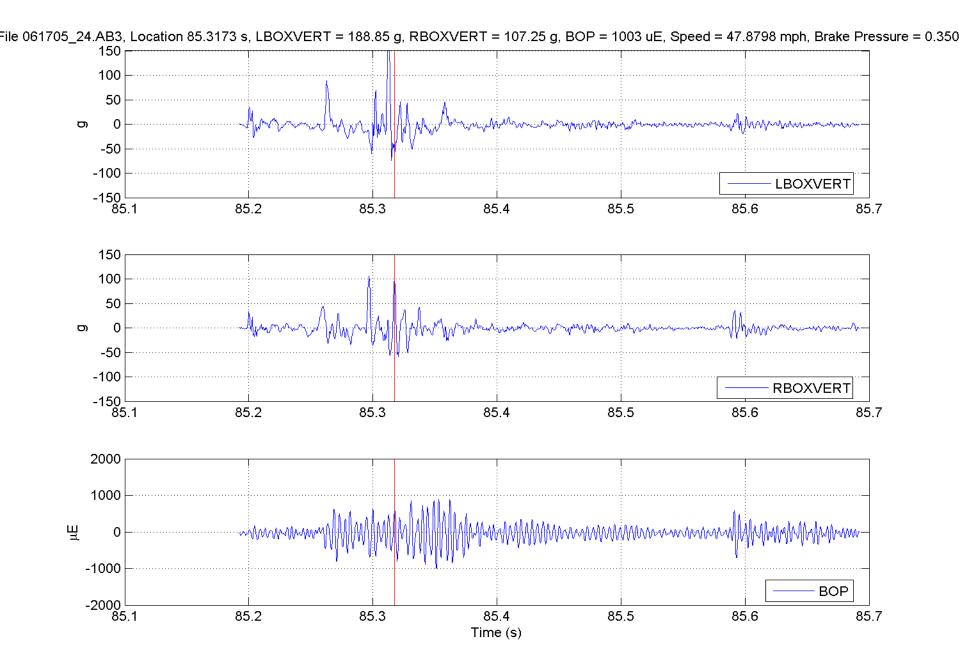
F-189



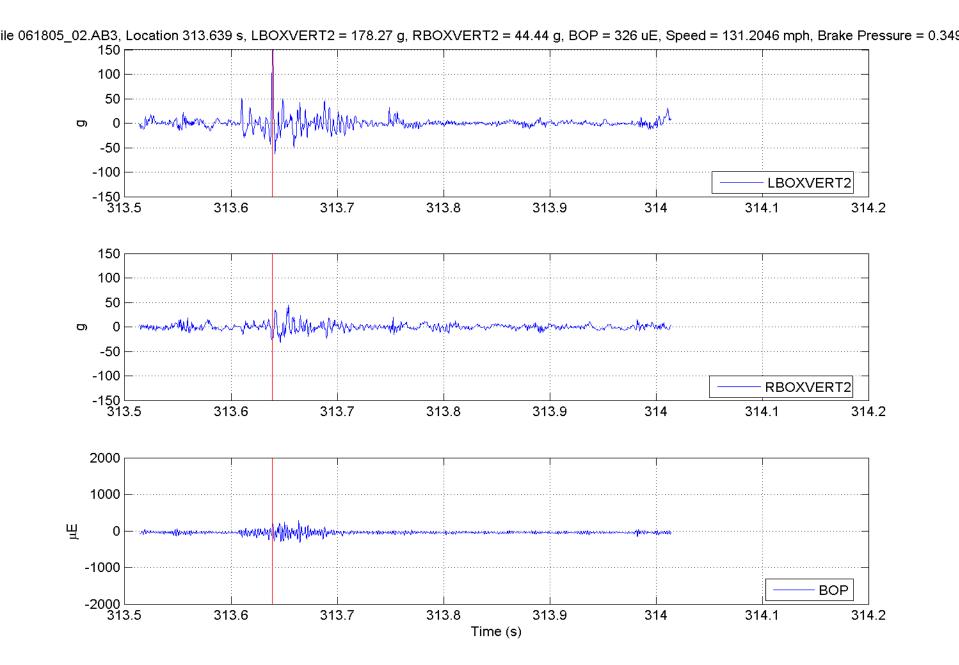
F-190


F-191

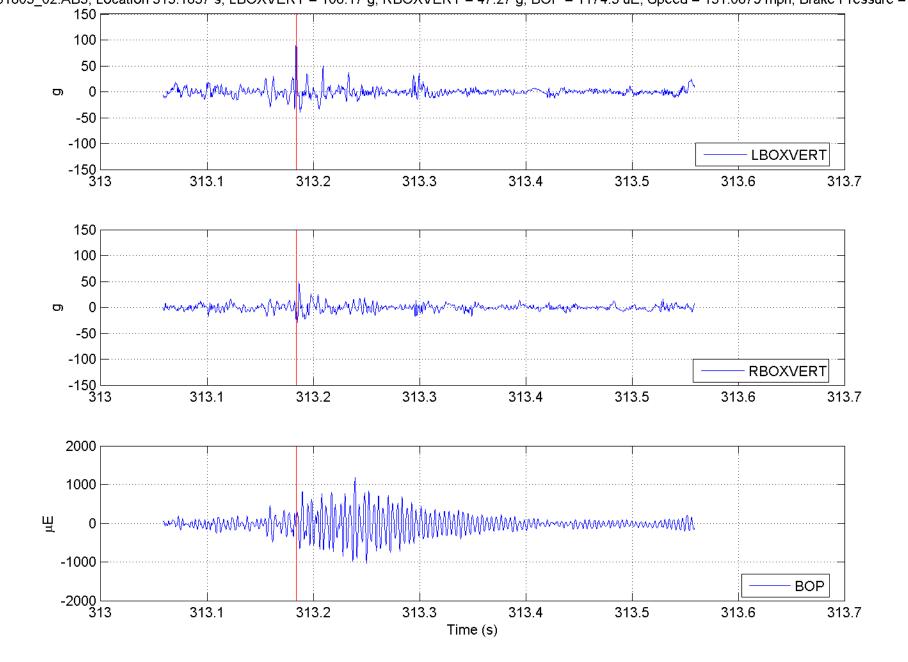
F-192


F-193

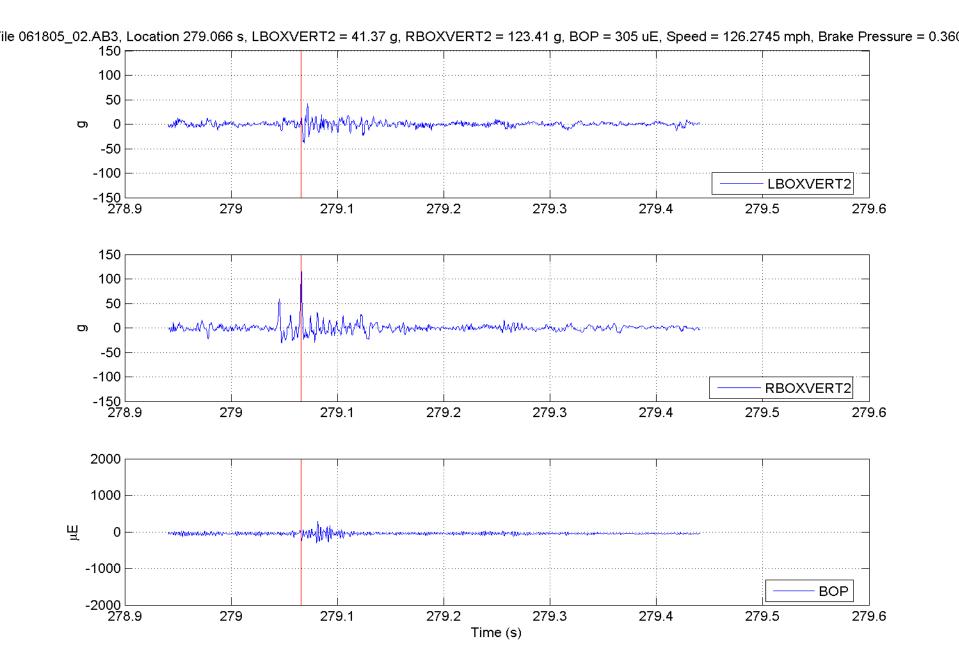
F-194

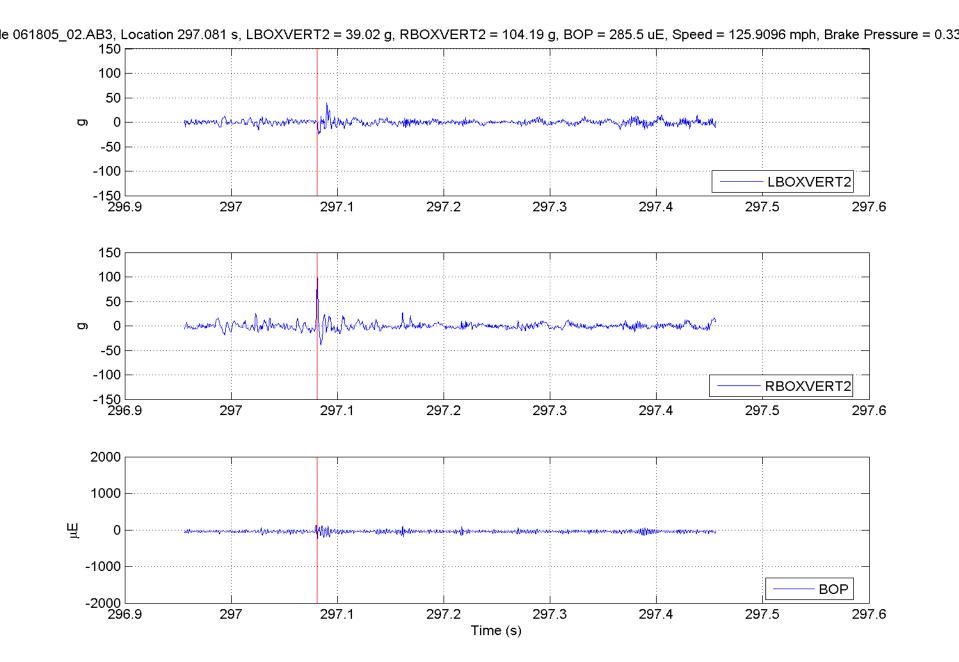

File 061705_24.AB3, Location 85.297 s, LBOXVERT = 188.85 g, RBOXVERT = 107.25 g, BOP = 1003 uE, Speed = 47.8994 mph, Brake Pressure = 0.3528 100 50 D -50 -100 **LBOXVERT** -150 | 85.1 85.2 85.3 85.4 85.5 85.6 85.7 150 100 50 D -50 -100 **RBOXVERT** -150 L 85.1 85.2 85.6 85.3 85.4 85.5 85.7 2000 1000 끸 -1000 BOP -2000 | 85.1 85.4 85.2 85.3 85.5 85.6 85.7 Time (s)

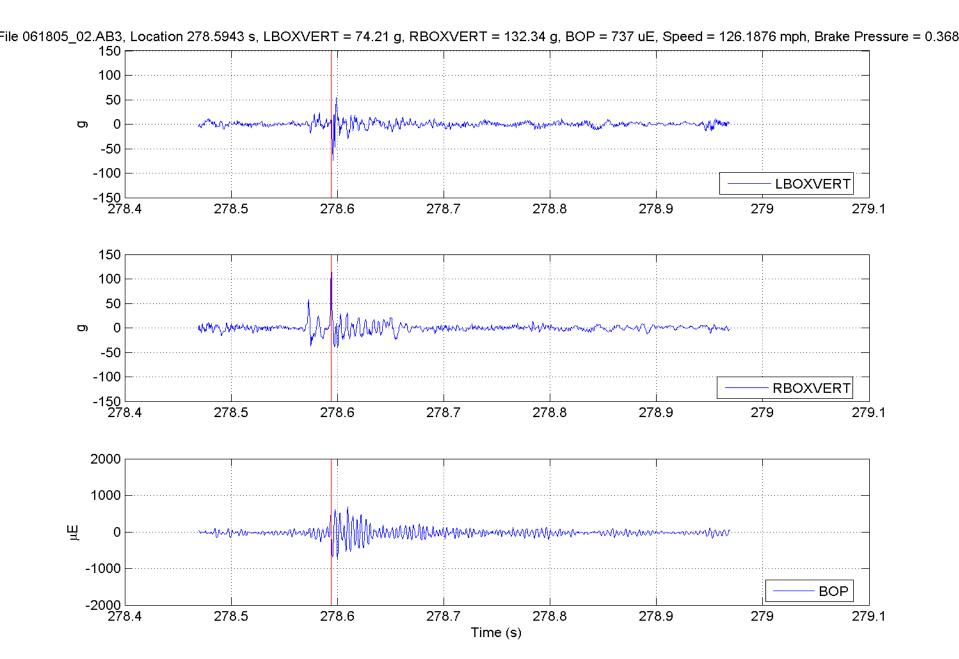
F-195

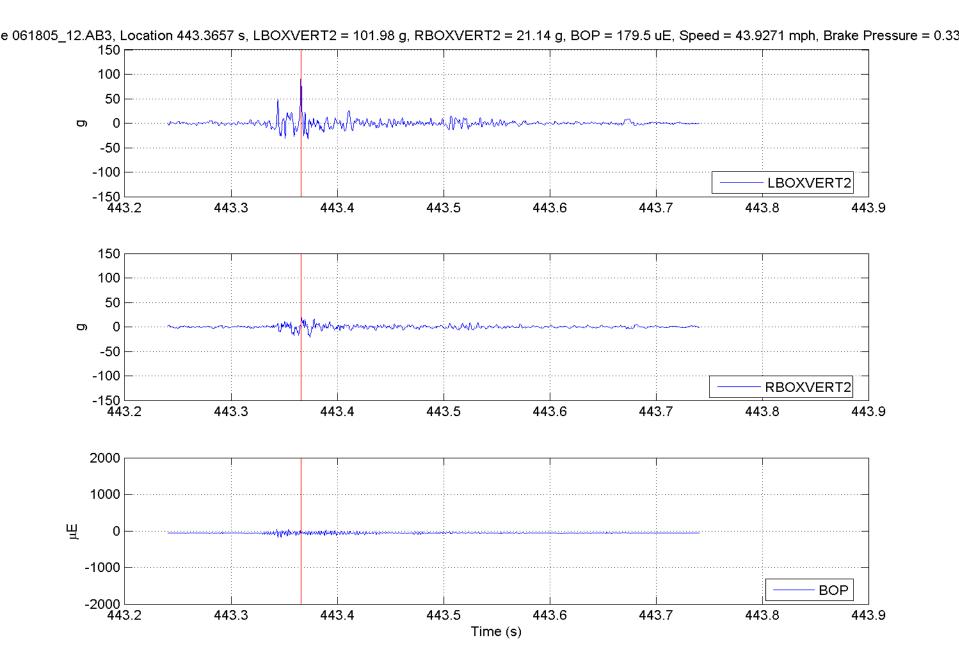


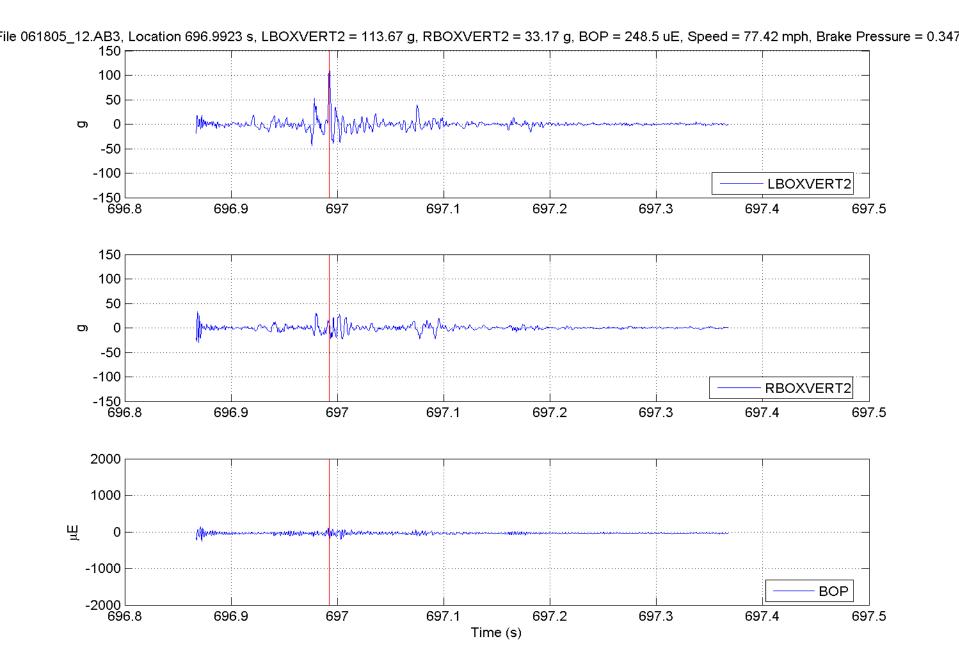
F-196

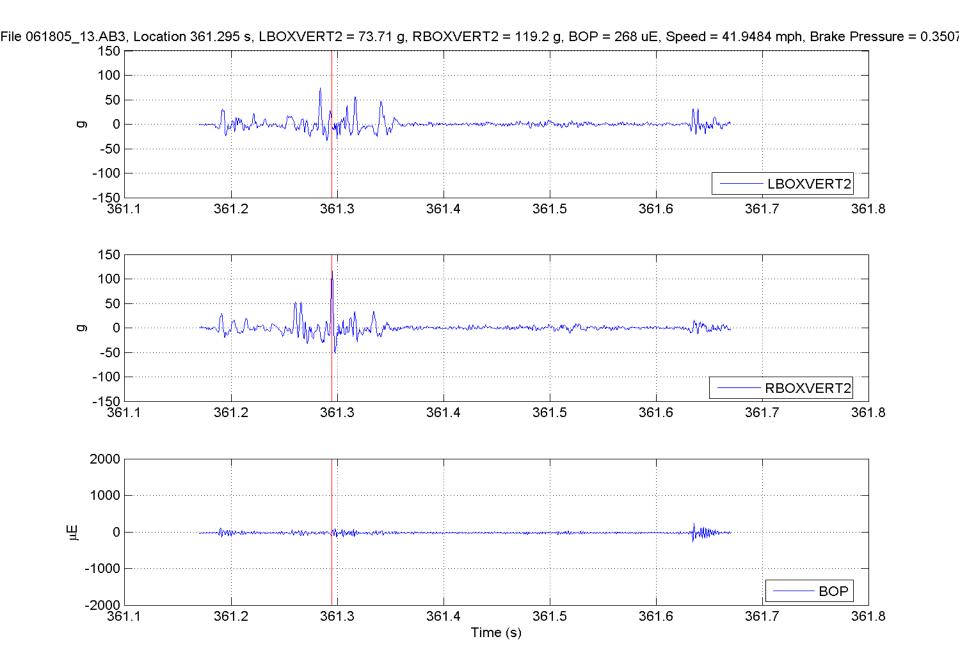

Day 7-June 18, 2005

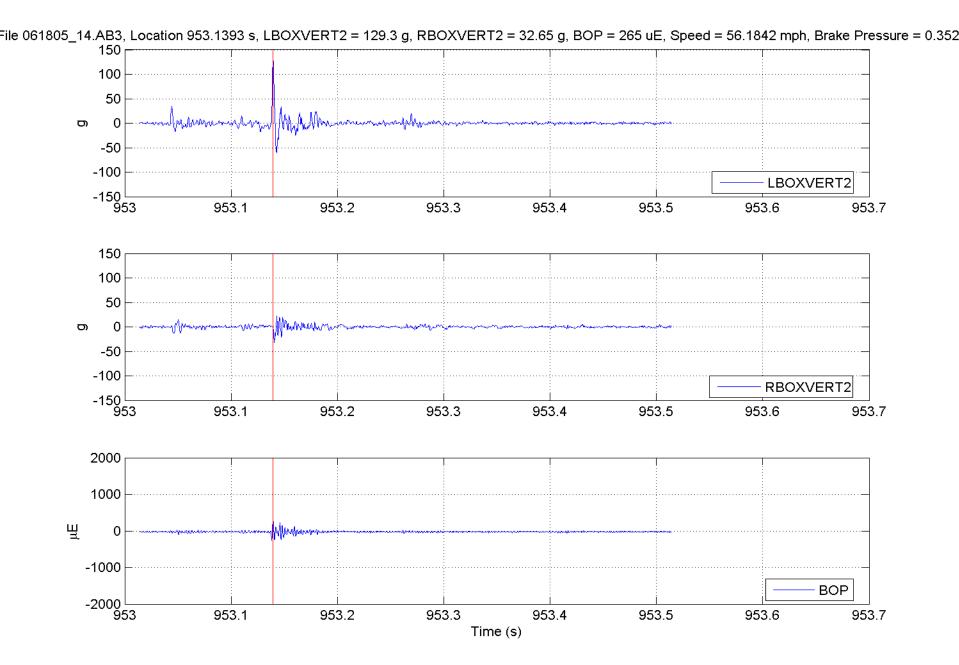

F-198

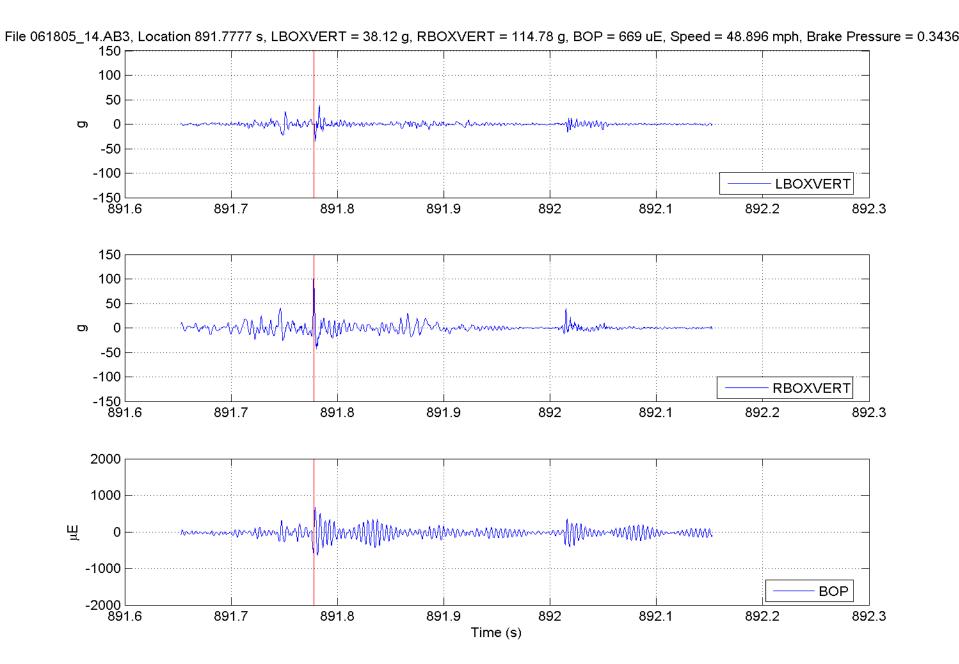

F-199

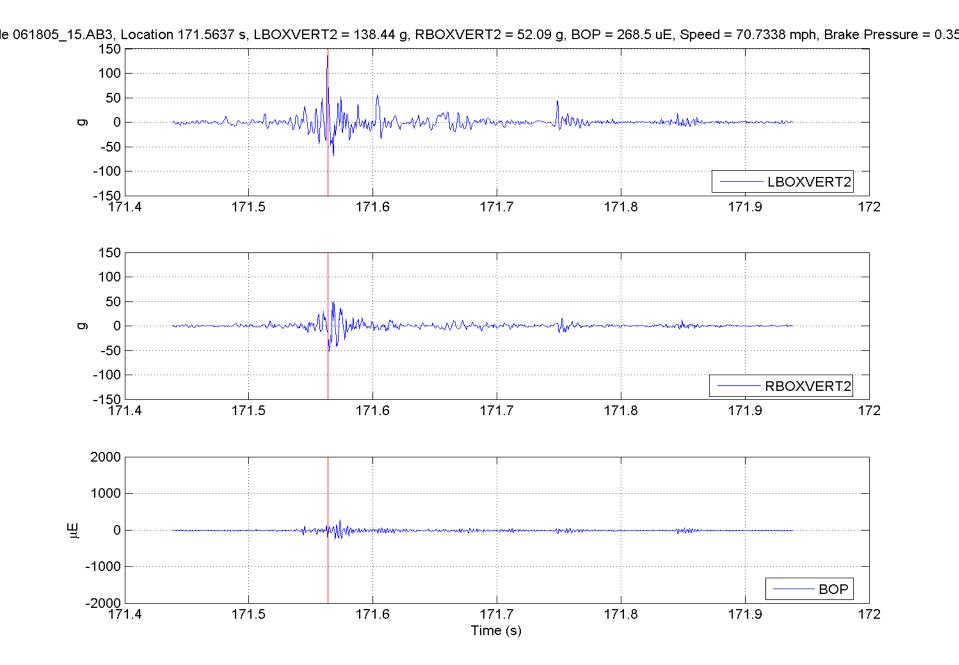

F-200

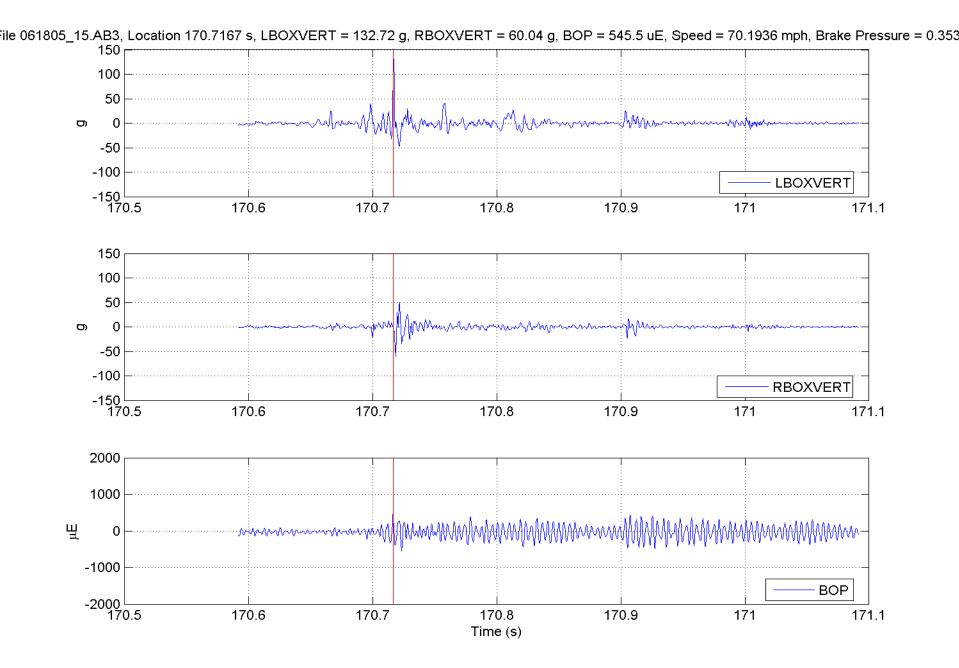

F-201

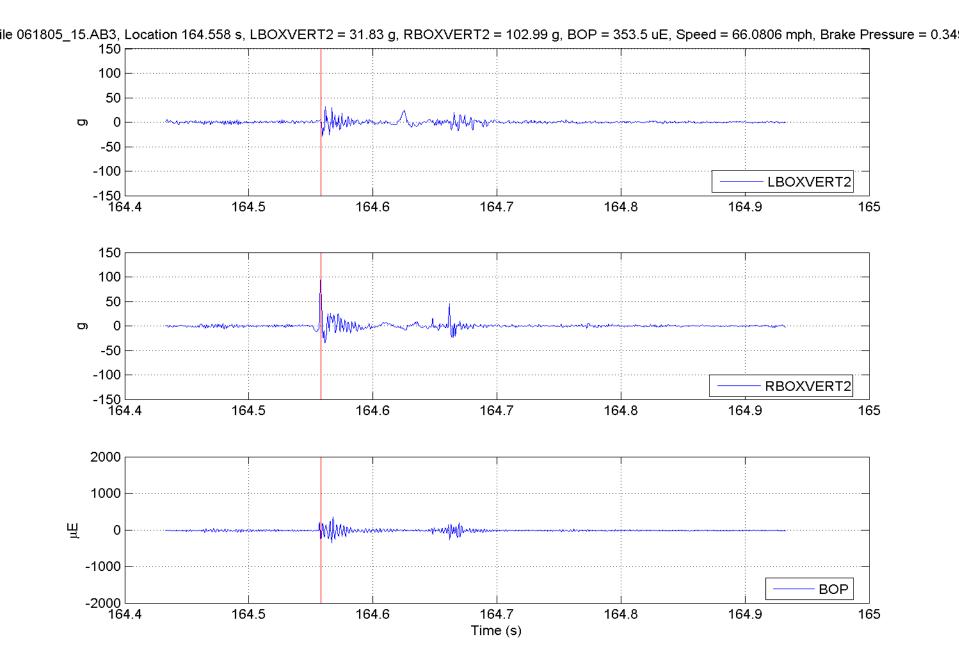

F-202

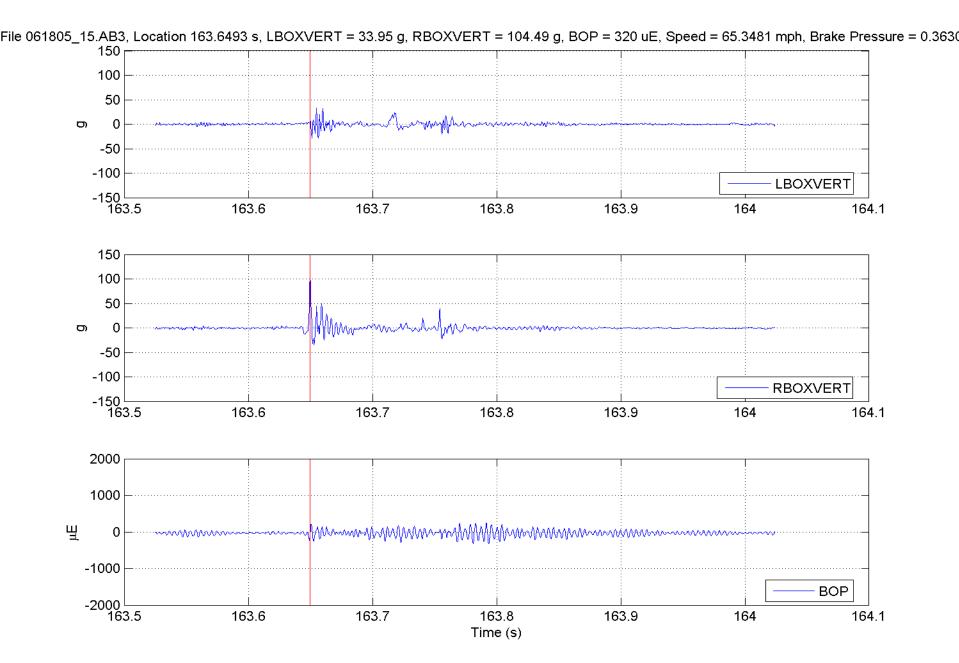

F-203

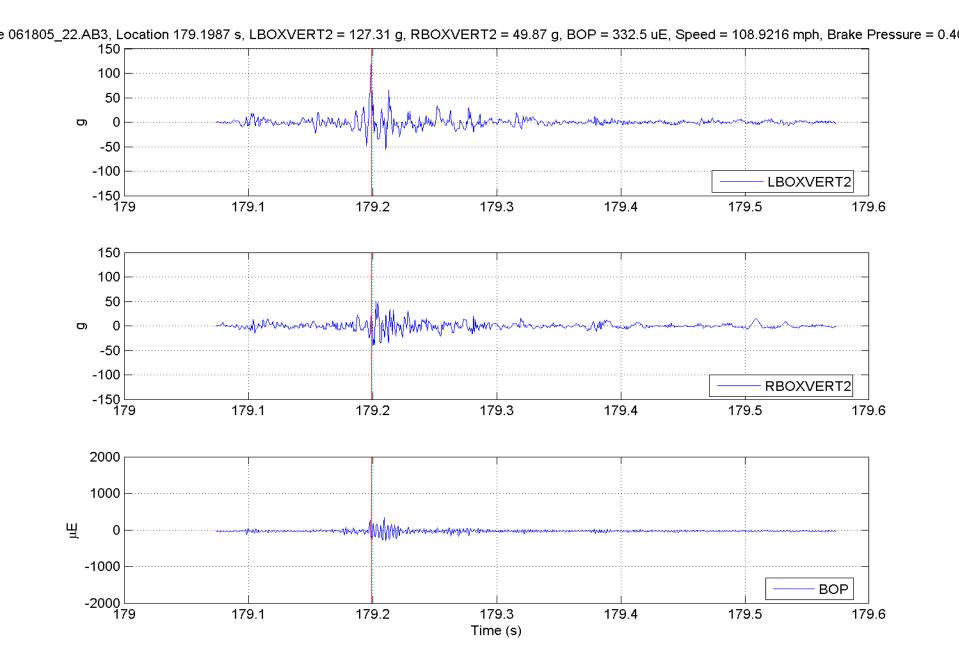

F-204

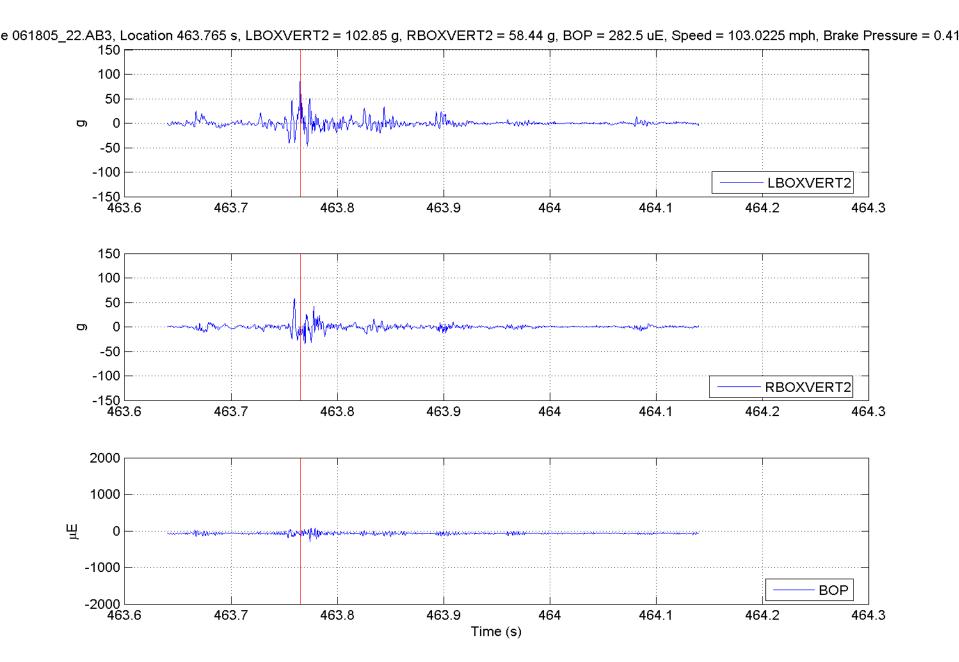

F-205

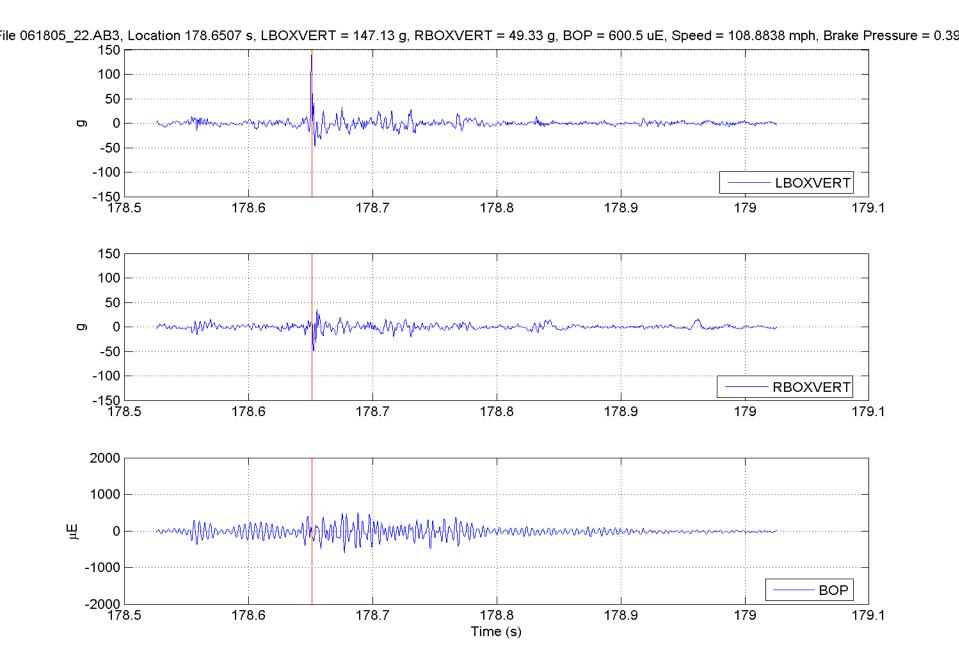

F-206

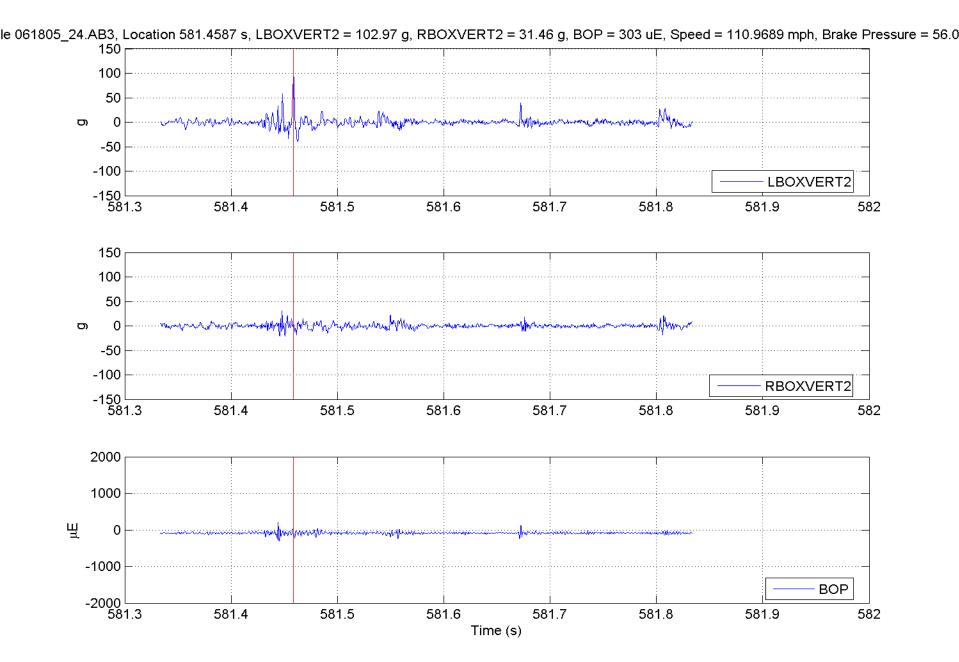

F-207

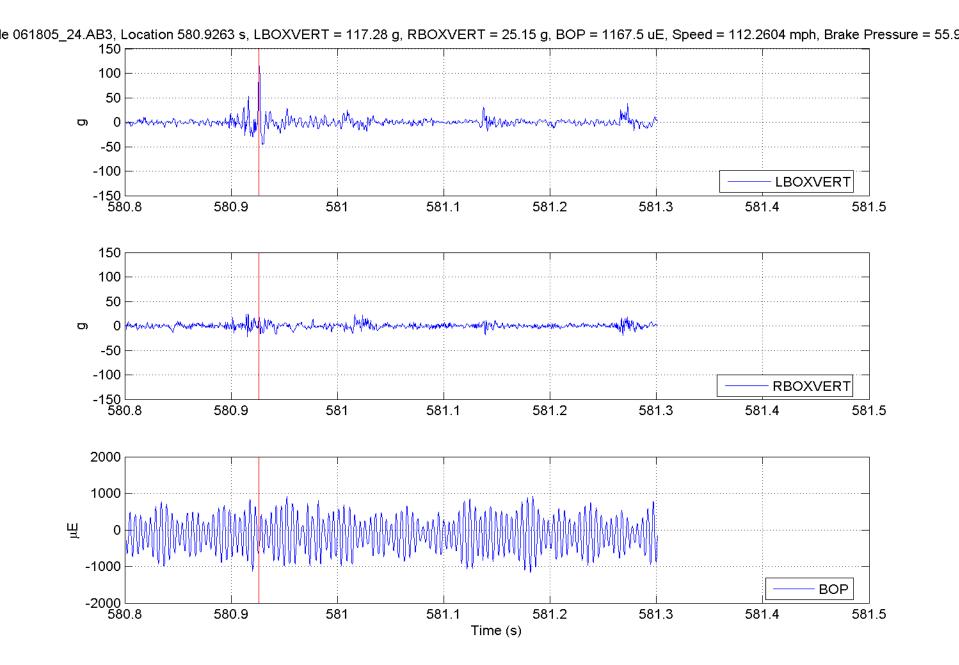

F-208

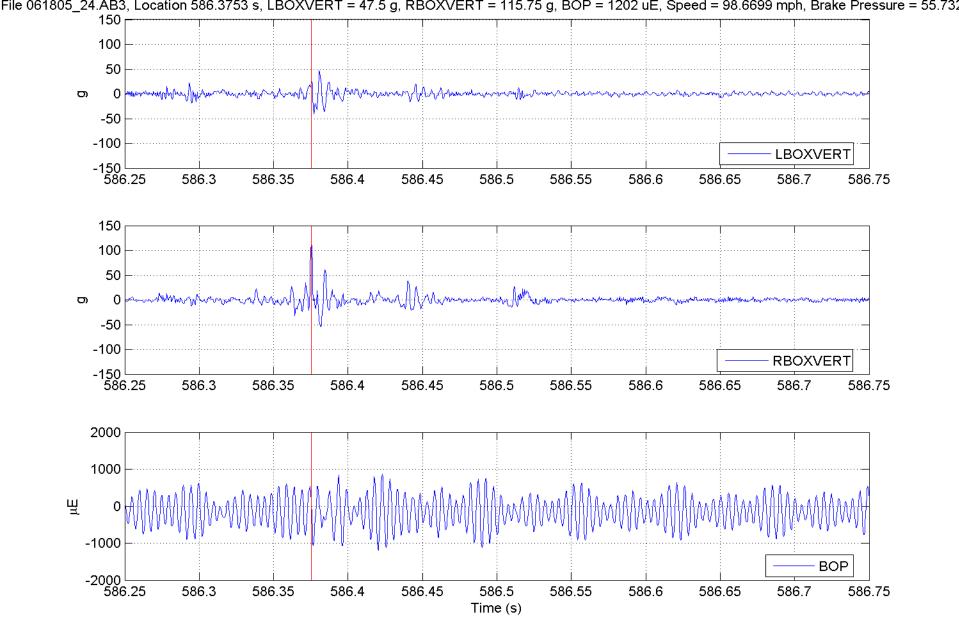

F-209

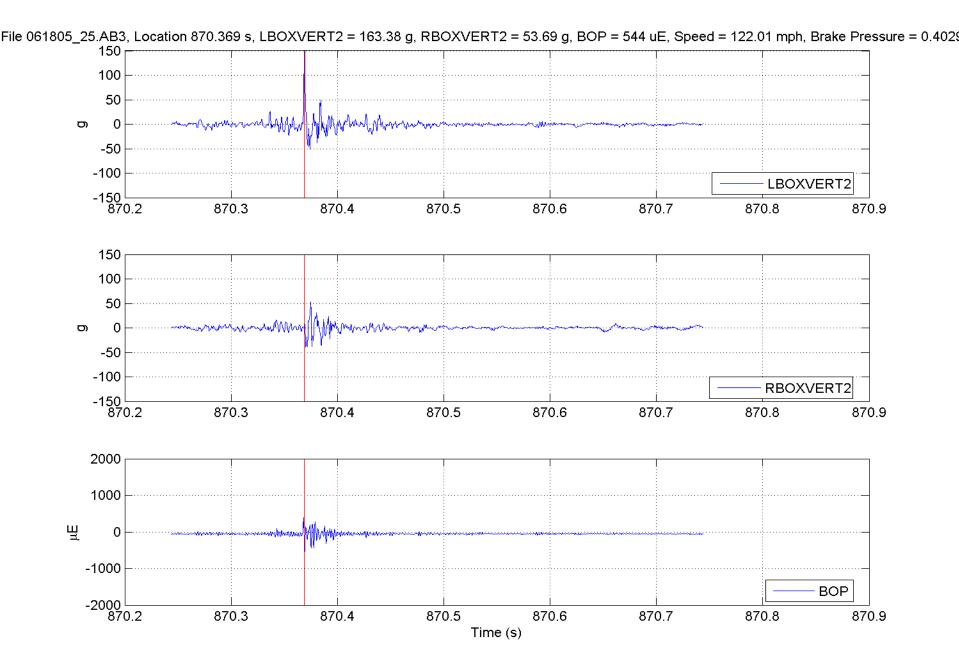

F-210

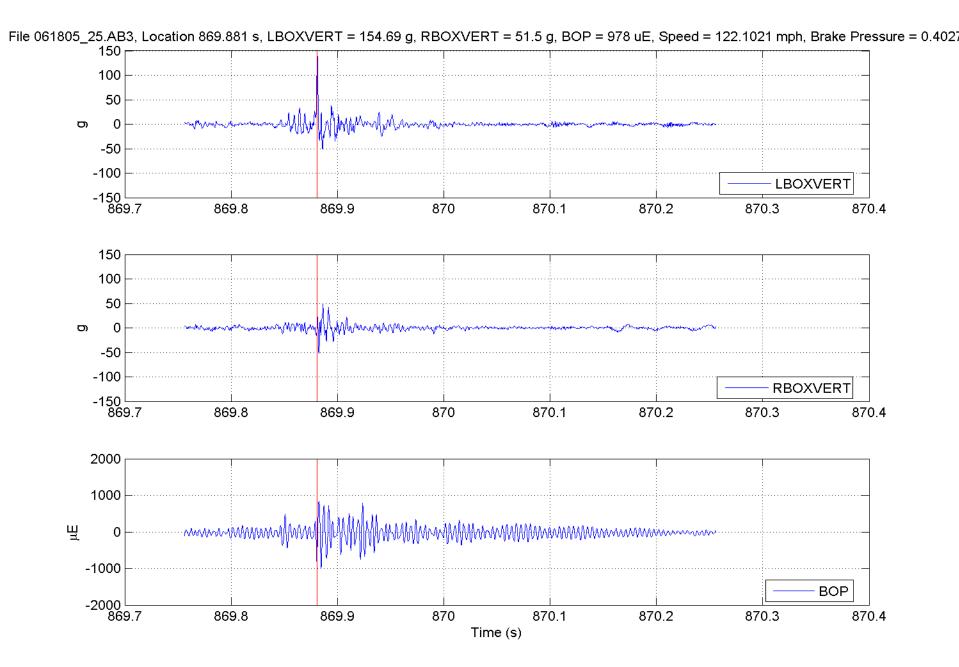

F-211

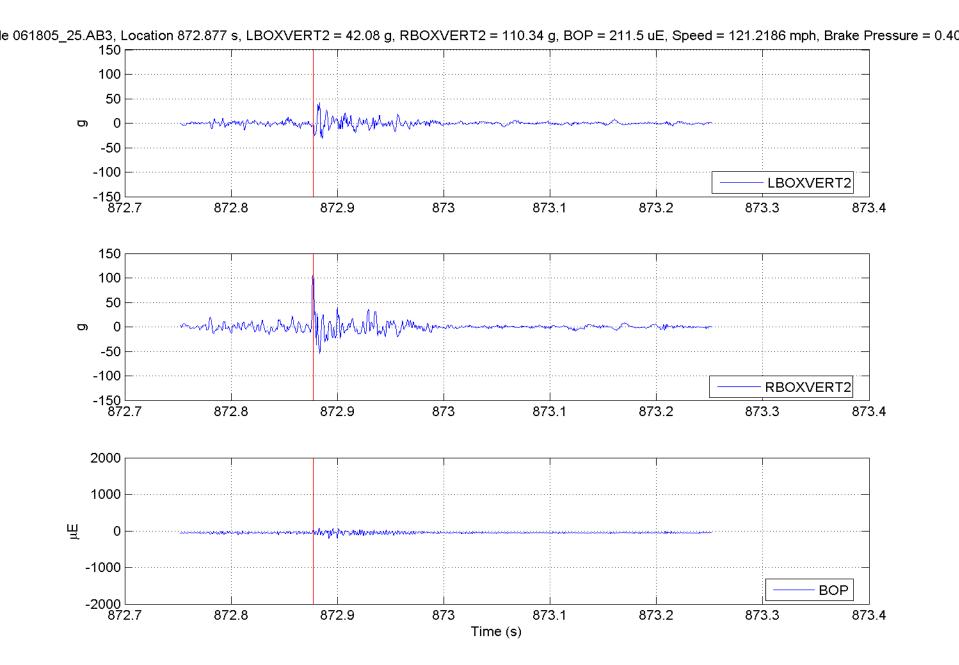

F-212

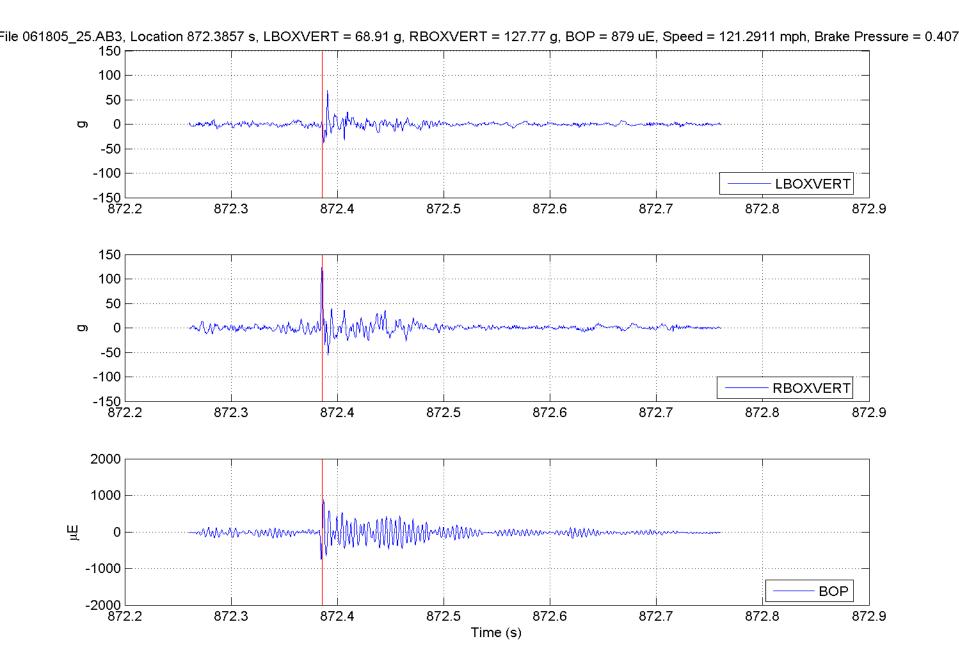

F-213

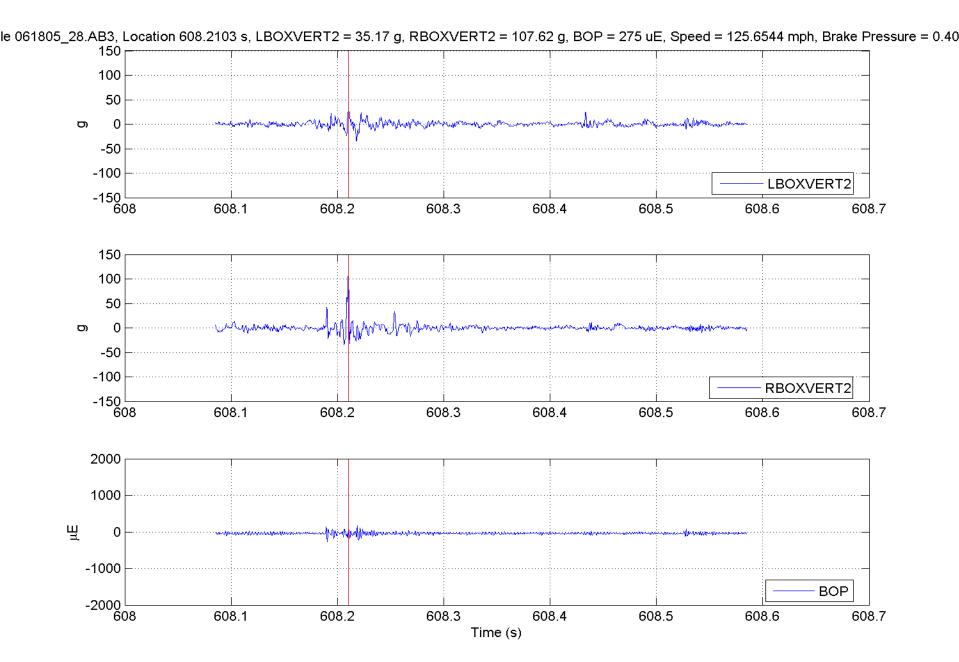

F-214

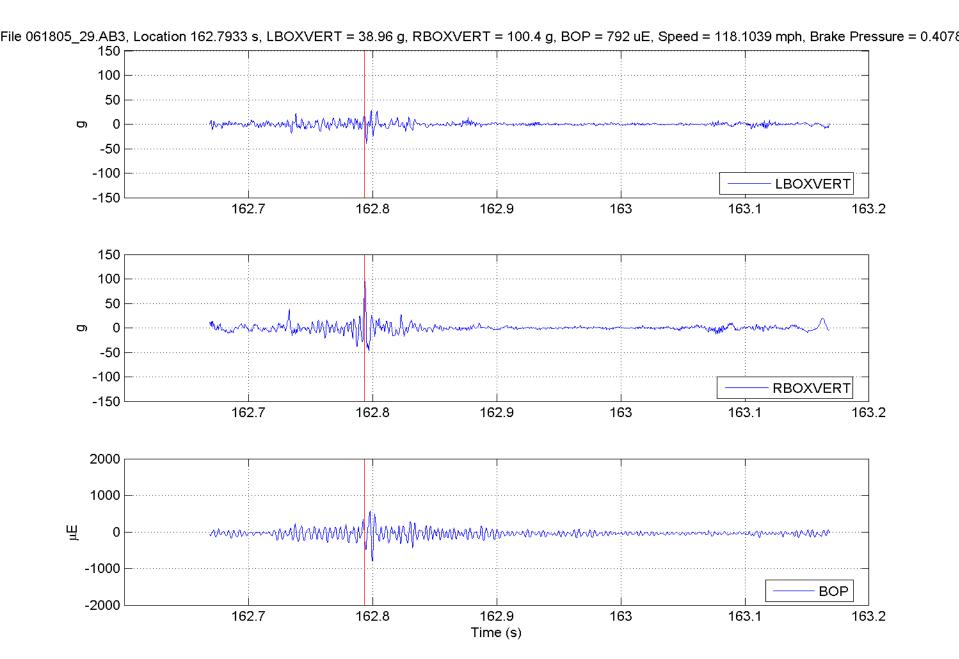

F-215

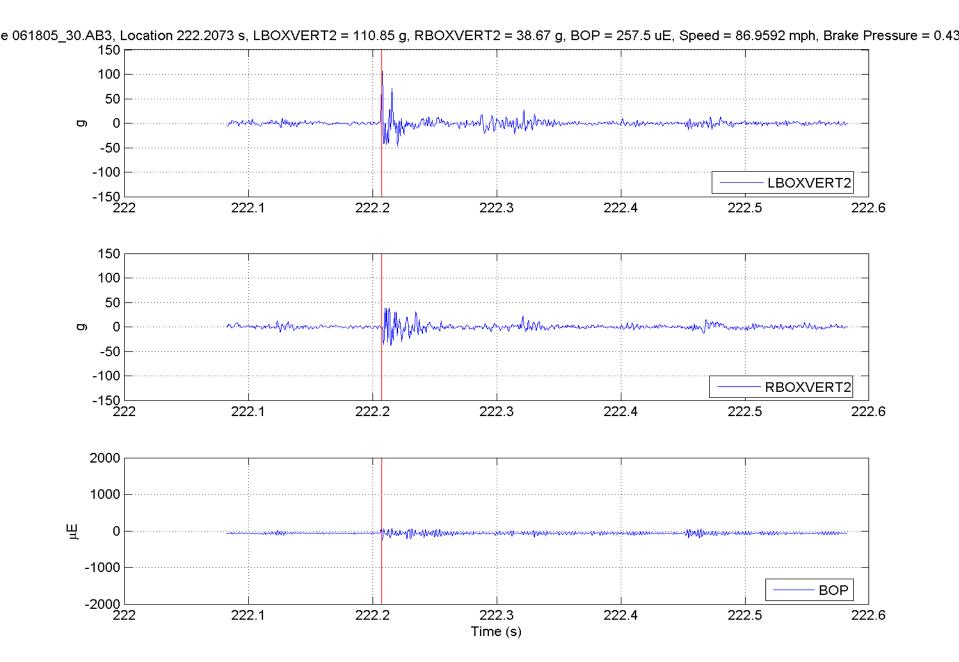

F-216

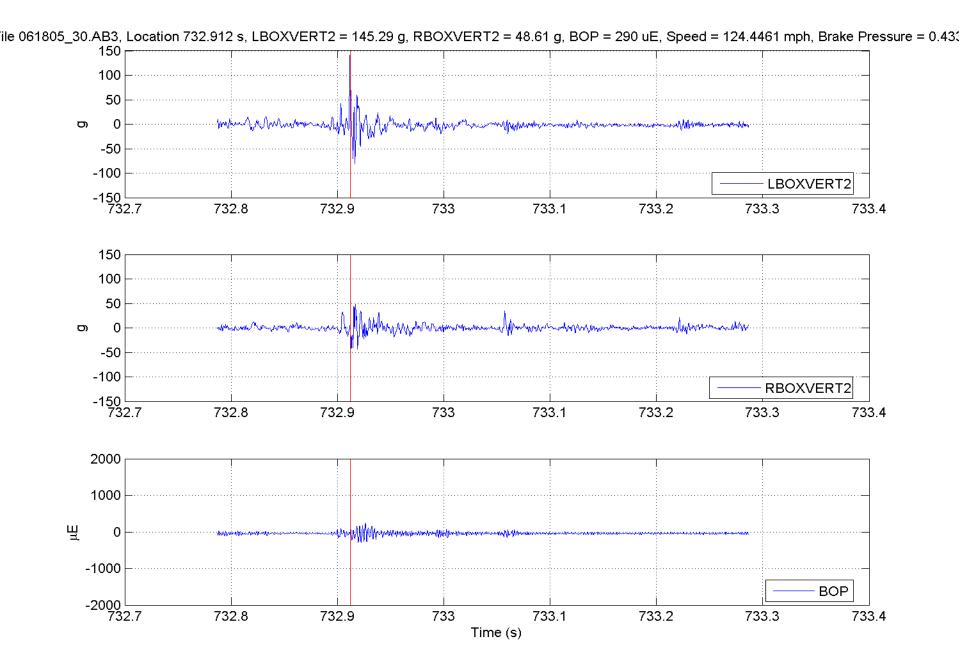

F-217

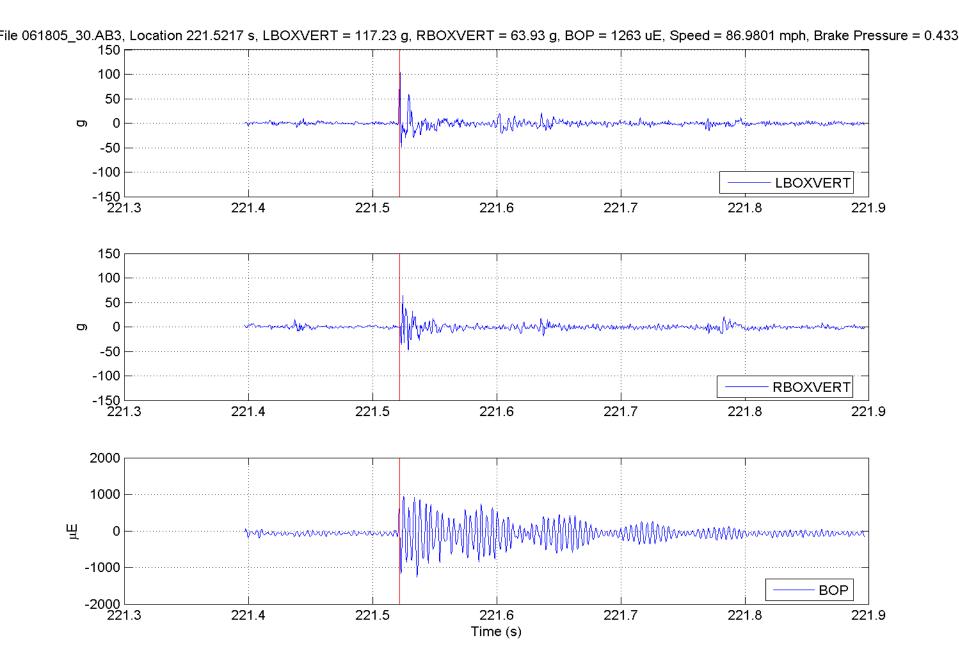

F-218

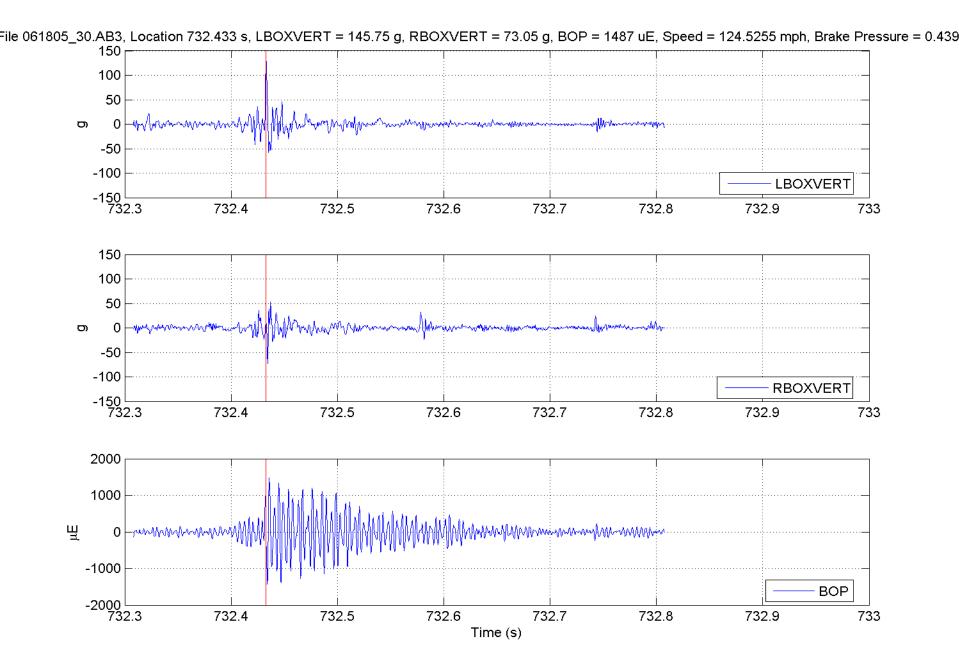

F-219

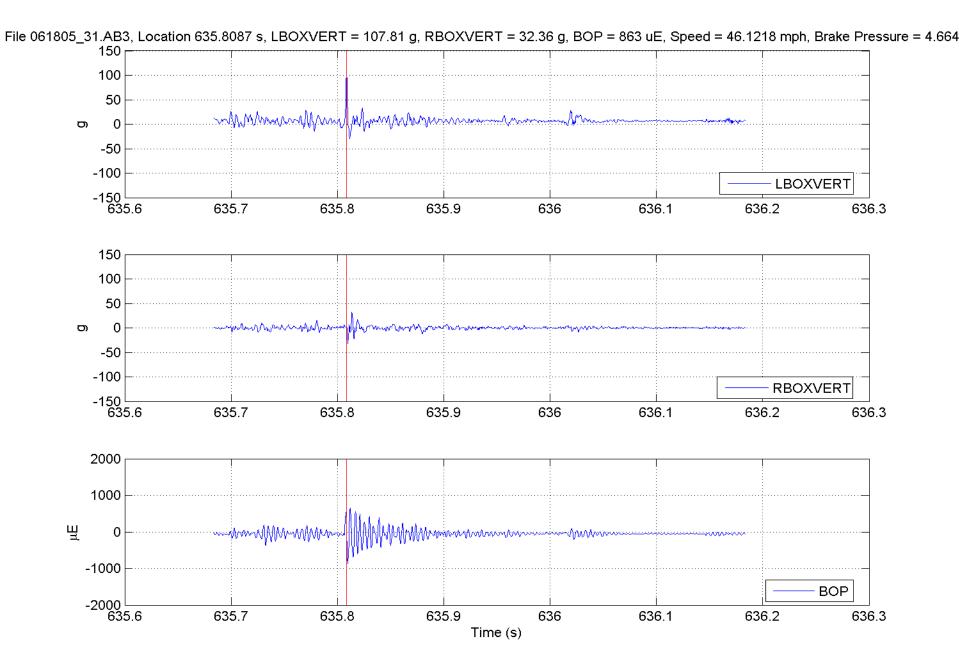

F-220


F-221


F-222


F-223


F-224


F-225

F-226

F-227

F-228

Appendix G. Spoke Strains

<u>Section</u>	<u>Page</u>
Introductory Comments	G-2
BOP Strains	G-24
Relationship of BOP Strain to Acceleration Difference	G-42
Estimate of Fatigue Effects and Goodman Plots	G-62

Introductory Comments

Basic Approach

- Combine Individual Strain Measurement into Strain Associated with:
 - Tension in Spoke (F1, F2, R1, and R2)
 - In-Plane Bending (BIP) of Spokes (F1 and F2)
 - BOP in Spokes (R1 and R2)
- Compare Test Results with Finite Element Analysis (FEA)
- Laboratory Testing to Support Analysis

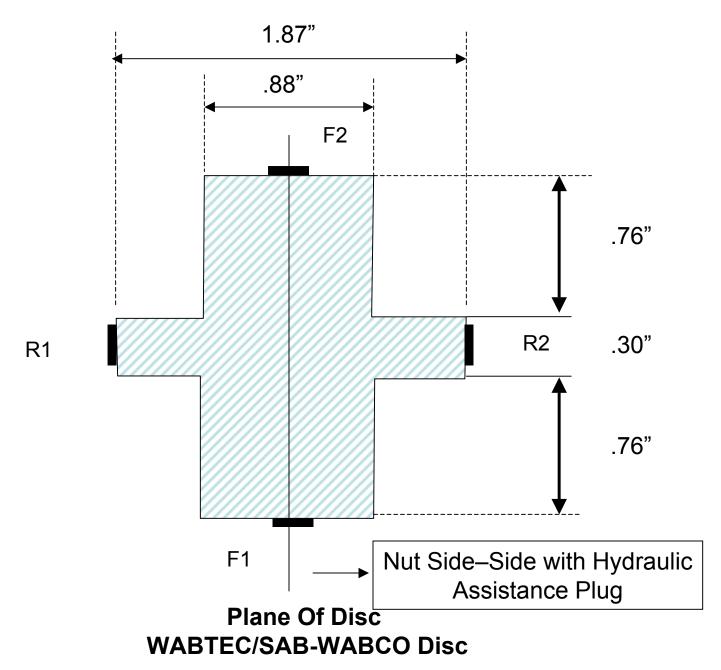
Three Components

- Tension in Spoke (F1, F2, R1, and R2)
 - $\varepsilon_T = (\varepsilon_{F1} + \varepsilon_{F2} + \varepsilon_{R1} + \varepsilon_{R2})/4$
- BIP of Spoke (F1 and F2)
 - $\varepsilon_{BIP} = (\varepsilon_{F1} \varepsilon_{F2})/2$
 - BIP = bending in plane
- BOP in Spoke (R1 and R2)
 - $\varepsilon_{BOP} = (\varepsilon_{R1} \varepsilon_{R2})/2$
 - BOP = bending out-of-plane
- These Three Strains Explain the Most Strain Seen at the Four Strain Gage Locations

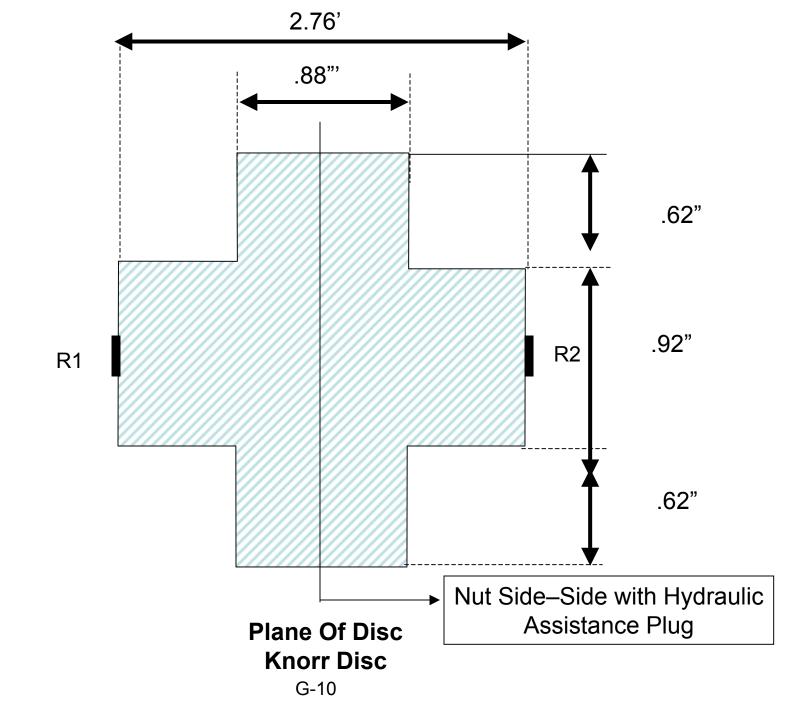
Names

- BOP
 - Bending of the Spoke out of the Plane of the Disc
- BIP
 - Bending of the Spoke in the Plane of the Disc

General Observations


- Large Tensile Strain
 - The Tensile Strains Appear To Be Generated
 As The Friction Rings Heat Up, Expanding The
 Circumference Of Friction Ring, Causing
 Tension In The Spokes Which Resist The
 Expansion
 - The Thermal Time Constant Once The Friction
 Discs Are Heated During Braking Is 7 Minutes
 Or More–20 Minutes To Cool Down

General Observations


- BOP occurs during braking
 - Many times long sustained periods
 - Sustained oscillations only with axle in lead position
- BOP occurs during non-braking conditions
 - Usually short duration
 - Appears to be associated with vertical acceleration
- Frequency
 - ~187 Hz during braking
 - ~230 Hz non-braking conditions
- BIP strain
 - Small compared to BOP strain
 - Rarely greater than 100 μE
- Measurements modulated by wheel rotation rate

Strain Gage Locations

- WABTEC/SAB-WABCO Disc
 - On Spoke at Location Where Spokes Cracked
 - Four Locations
 - Two on out-of-plane side of spoke
 - Two on in-plane side of spoke
- Knorr Disc
 - Location Provided by Knorr
 - Four Locations
 - Two on out-of-plane side of spoke
 - Two on in-plane side of spoke

G-9

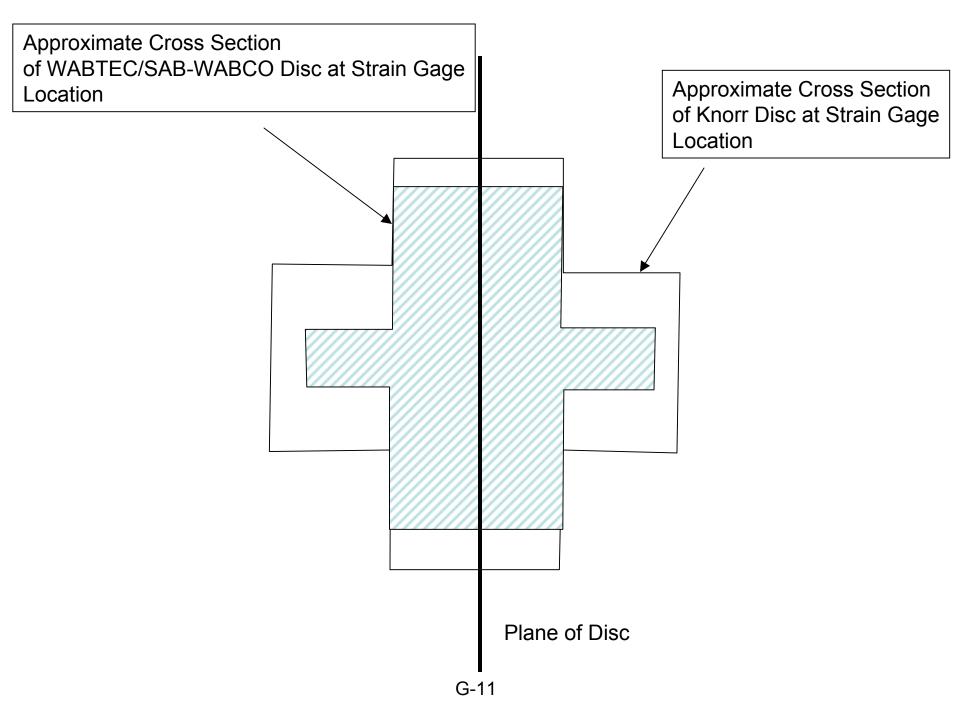
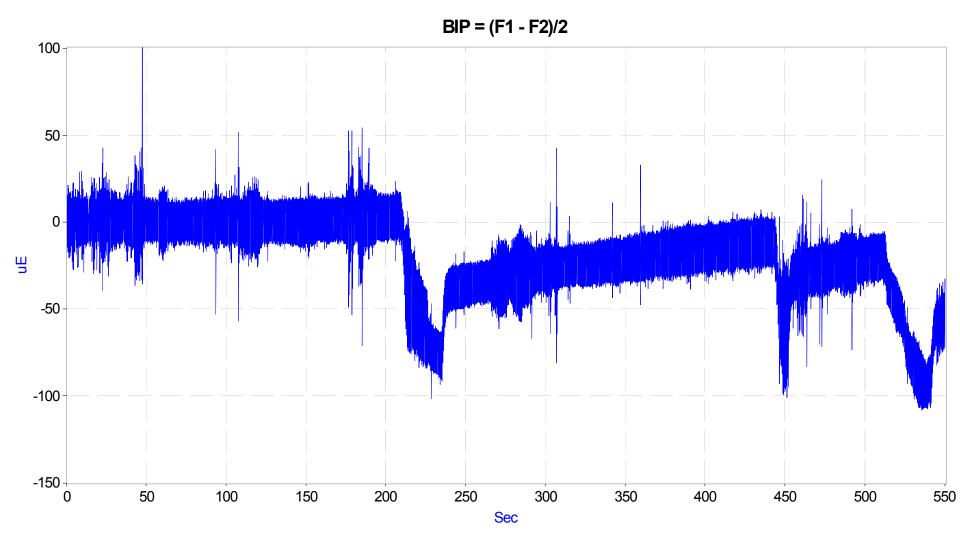
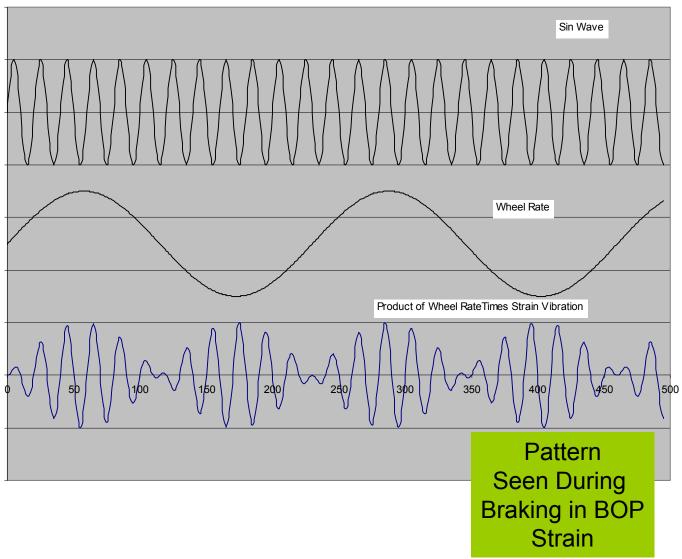



Table G.1. Spoke Cross Section Values

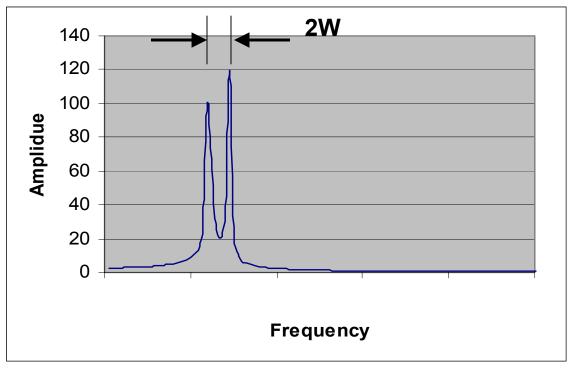
	WABTEC/SAB- WABCO	Knorr
Area	1.9 in ²	3.6 in ²
Moment of Inertia (bending in-plane)	0.44 in ⁴	0.85 in ⁴
Moment of Inertia (bending out-of-plane)	0.25 in ⁴	1.69 in ⁴


Bending In-Plane

Bending Out-Of-Plane

- In The First Days Of Testing Large Oscillations
 At ~ 187 Hz Were Observed
- The Question Was Whether This Oscillation Was In The Plane Of The Disc Or Out Of The Plane
- The Effect Of BOP Being Modulated By Wheel Rotation Rate Is Investigated In The Next Series Of Slides
- Later In The Testing Program Strain Gages
 Were Added To Spoke 3 (Diametrically Opposed
 To The Initial Instrumented Spoke 6) And
 Demonstrated The Out-Of-Plane Behavior

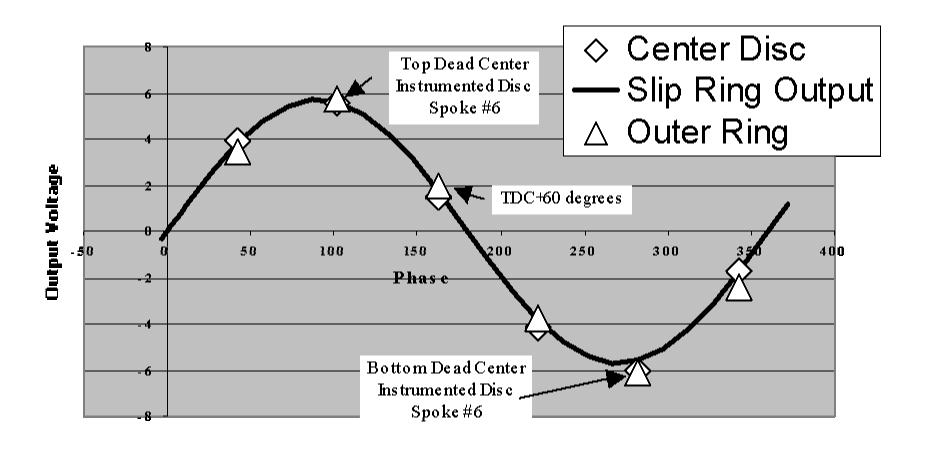
Wheel Rate Modulation

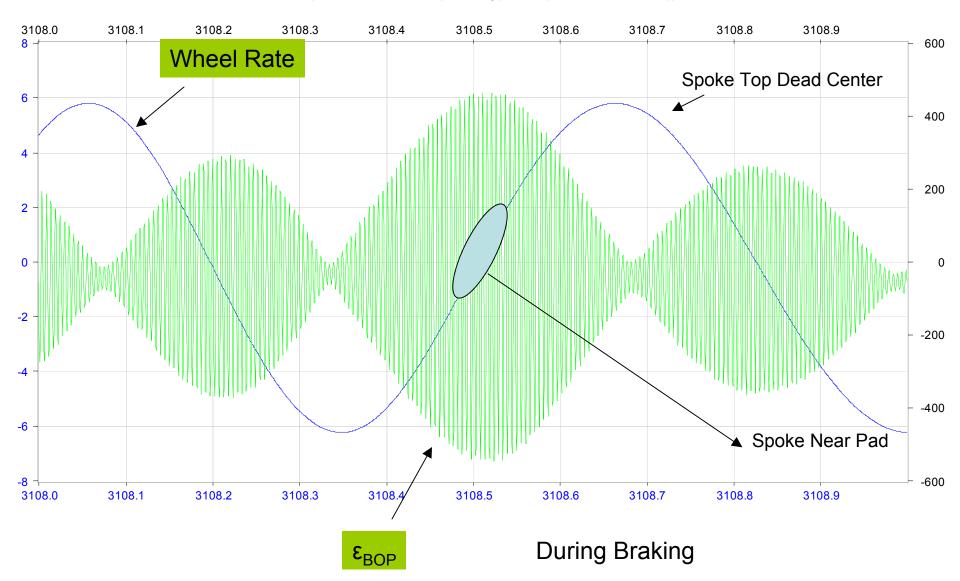

Frequency Domain Analysis of Modulated BOP Strain

 $Sin(2\pi Ft)*Sin(2\pi Wt)$

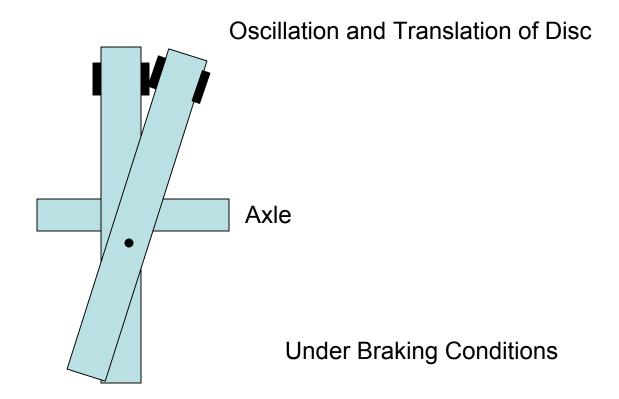
= $-0.5*Cos\{2\pi(F+W)t\}+0.5*Cos\{2\pi(F-W)t\}$

F = Strain Signal Frequency

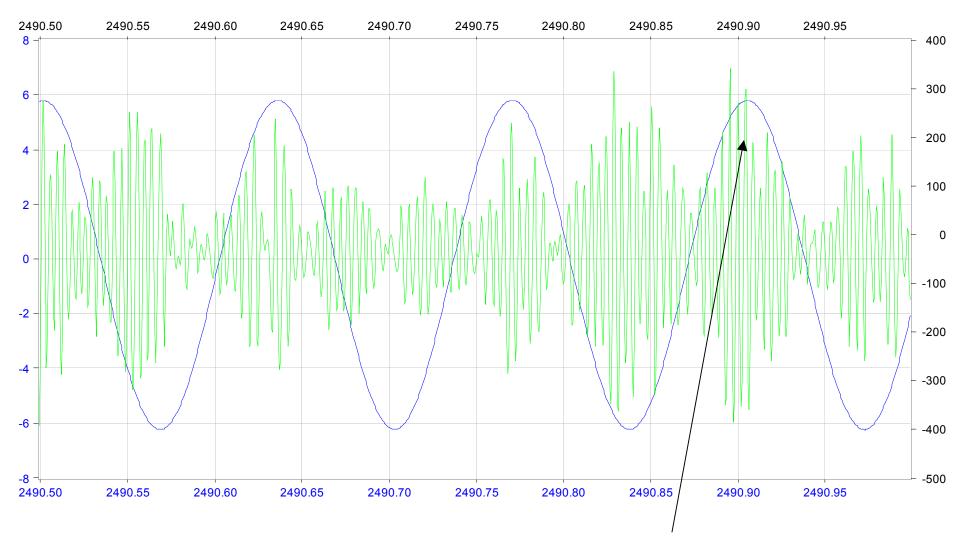

W = Wheel Rate


Spoke Location

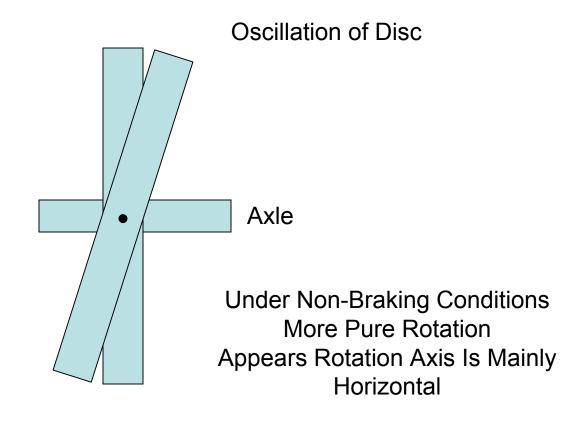
- The Slip Ring Used To Transfer Signals From The Rotating Axle And Disc Contains A Sine Wave Generator (One Cycle Per Wheel Revolution)
- A Test Was Performed To Determine The Phase Of This Signal With The Position Of The Instrumented Spoke
- This Information Is Important In Determining The Axis Of Rotation Of The Disc
- Results Are Shown In The Next Slide


Instrumented Spoke Phase Based on Wheel Position

extract(w10, 3108*2000, 2000); overlay(extract(w7, 3108*2000, 2000))


Look Down on Disc

Caliper Displacement

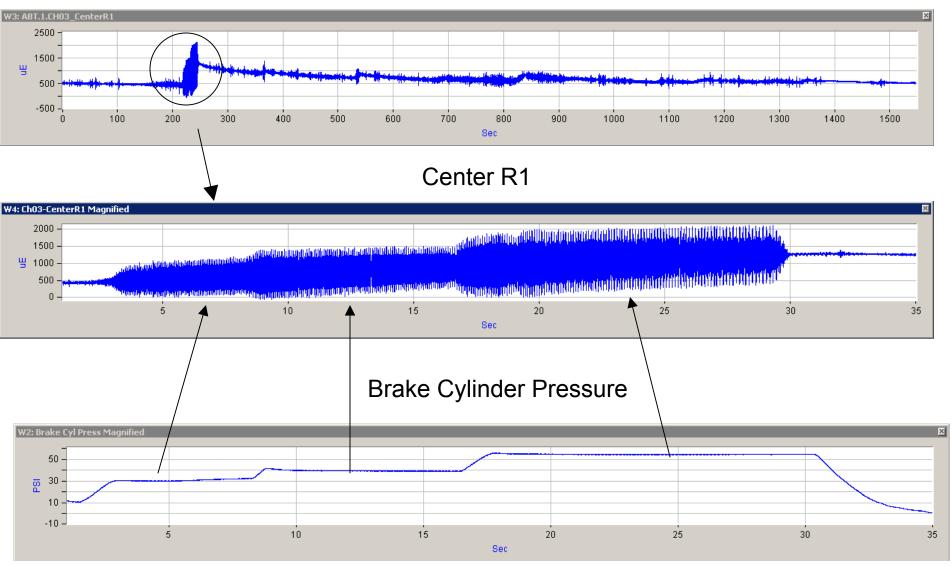

- The Amplitude Of The BOP Oscillation
 During Braking Was Estimated By
 Observing The Amplitude Of The Lateral Acceleration Of Brake Pad
- Acceleration Level = 20 G's = $D\omega^2$
- Frequency= 192.4 Hz = 1,209 Radians
 Per Second
- Displacement = .005 Inches

extract(w10, 4981000, 1000); overlay(extract(w7, 4981000, 1000))

Non-Braking Conditions Strain Amplitude When Spoke Is Near Top Dead Center

Look From Front

BOP Strains


BOP Strain

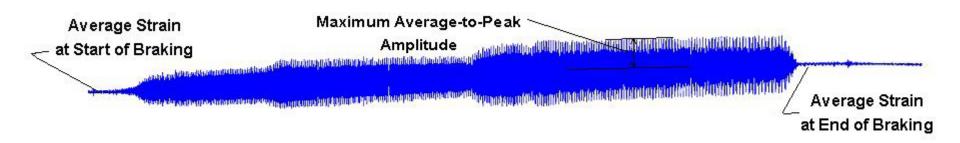
- Large BOP Strain
 - Condition 1: Input From Vertical Acceleration
 Observed On The Outer Bearing Housing Leads To A
 Ring-Out At ~230 Hz In The BOP Mode
 - Condition 2: During Braking With Instrumented Axle In Lead Leads To Sustained Oscillation On The BOP Mode At ~187 Hz—Since This Occurs During Braking, Mean Strain Values Are Increasing
- Both May Contribute To Fatigue Damage Of The Spoke

Sustained Oscillations And Track Related Oscillations

- Track Related Inputs Occur Continuously
- Track Related Responses (e.g., BOP Strain) Are Continuous But May Be Small During A Great Deal Of The Test
- The Sustained Oscillations Occur Infrequently During The Test But Produce A Large Number Of Oscillations
- During Sustained Oscillations, Response Is The Combined Effect Of Track Related Response And The Oscillations Induced By Braking

Example of Large BOP Strain During Braking

Note: The Relationship of BOP Strain and Brake Cylinder Pressure


Sustained Oscillation Data

- First Task Was To Identify Location Of Sustained Oscillations And Characterize General Behavior
- Simple 3 Parameter Model
 - Mean Stress At Beginning Of Sustained Oscillation Period
 - Mean Stress At End Of Sustained Oscillation Period
 - Maximum Alternating Strain During Sustained Oscillation Period
- More Detailed Analysis Is Required To Investigate The Fatigue Implications Of These Oscillations

Table G.2. Summary Of Significant Sustained BOP Oscillations During Braking

				Rang	je of	
	Instrumented	Number of	Number of	Bra	ke	
Direction	Axle Leading	Sustained	Brake	Cylir	nder	
	or Trailing	Events	Applications	Pressures		
				(ps	si)	
North	Trailing	0	103			
South	Leading	7	76	31	45	
North	Leading	11	82	30	40	
South	Trailing	0	98			
North	Leading	24	147	23	55	
South	Leading	9	95	35	56	
	Total	51	601			

Terms Used To Describe Sustained Oscillations

Table G.3. Significant Sustained Oscillations During Braking–May 17, 2005

17-May Bos-Was 7in CD Instrumented Axle Leading

Geographic Location	File	Time Span in the File (secs)	Time Duration in Secs	Max Avg-to-Peak Strain	Avg Strain @ Start	Avg Strain @ End	Speed (mph)	Brake Cyl Press	Temp at Start °F	Temp at End °F	Peak Temp °F
1685 SW of MP E17	File17	218 to 246	28	850 uE	445	1329	101	45 psi	136.7	184.6	229.0
190 SW of MP AN13	File19	142 to 164	22	711.5 uE	350	887	103	35 psi	116.0	163.5	189.9
Near N. Philadelphia	File19	3107 to 3114	7	502 uE	10.6	32.3	14	45 psi	183.3	187.7	193.0
516 SW of MP AP25	File20	1251 to 1257	6	622.5 uE	476	659	94	36 psi	109.9	122.6	172.8
2303 NE of MP AP65	File21	1204 to 1224	20	700 uE	785	1368	110	40 psi	127.5	186.4	242.2
947 NE of MP AP71	File21	1475 to 1507	32	591 uE	950	1702	119	37 psi	172.3	227.3	283.1
1573 W of MP AP91	File21	2392 to 2404	12	502 uE	617	886	70	32 psi	131.4	136.7	181.5
471 SW of MP AP79 Gunpow	File21	2019 to 2022	3	576 uE	875	958	123	31 psi	160.9	161.8	171.9

Table G.4. Significant Sustained Oscillations During Braking–May 26, 2005

26-May Was-Bos 7in CD Instrumented Axle Leading

Geographic Location	File	Time Span in the File (secs)	Time Duration in Secs	Max Avg-to- Peak Strain	Avg Strain @ Start	Avg Strain @ End	Speed (mph)	Brake Cyl Press	Temp at Start °F	Temp at End °F	Peak Temp °F
1429 SW of MP AN11	File05	2323 to 2339	16	706.5 uE	701	1142	103 mph	40 psi	107.3	134.1	161.8
15 NW of MP E13	File07	418 to 423	5	482.5 uE	393	503	64.26 mph	32 psi	82.6	102.9	137.6
2139 NE of MP E17	File08	157 to 177	20	665 uE	432	869	77 mph	34 psi	93.2	117.8	145.9
195 SW of MP MN59	File09	202 to 206	4	262 uE	353	453	64.69 mph	30 psi	77.4	90.1	140.7
642 E of MP AB84	File12	400 to 430	30	792.5 uE	257	1129	122 mph	35 psi	74.3	126.2	162.6
1108 E of MP AB89	File12	600 to 632	32	784 uE	697	1617	89.25 mph	36 psi	134.1	186.8	217.2
1240 E of MP AB116	File13	479 to 485	6	540.5 uE	734	873	79 mph	32 psi	129.2	138.9	156.9
1936 NE of MP AB158	File15	984 to 1028	44	971.5 uE	391	1764	150.2 mph	40 psi	85.3	185.9	222.9
2230 S of MP AB179	File15	1579 to 1596	17	795.5 uE	650	1301	137 mph	38 psi	109	128.8	161.8
1939 SW of MP AB204	File17	114 to 119	5	766 uE	409	657	130 mph	33 psi	80	83.5	96.7
1732 NE of MP AB216	File17	451 to 473	22	542 uE	678	1124	83.8 mph	36 psi	87.5	145.5	187.3

Table G.5. Significant Sustained Oscillations During Braking-June 17, 2005

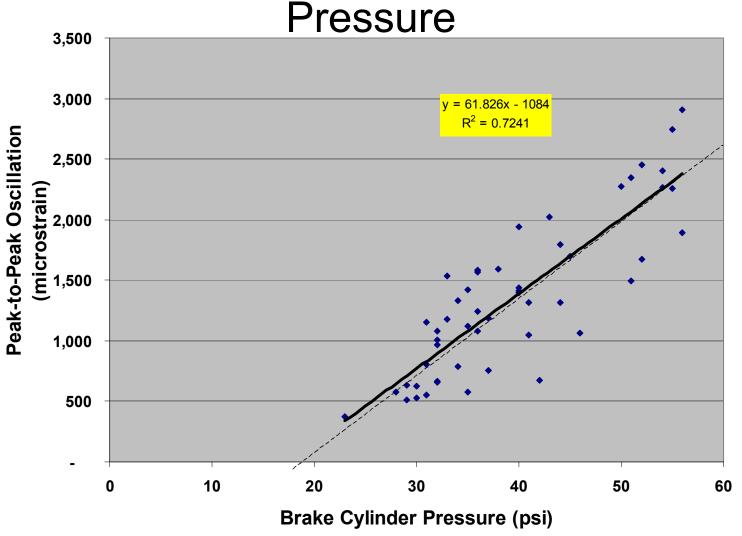
Geographic Location	File	Time Span in the File (secs)	Time Dura- tion in Secs	Max Avg-to- Peak Strain	Values for Peak and Valley [uE]	Avg Strain @ Start	Avg Strain @ End	Speed (mph)	Brake Cyl Press	Temp at Start °F	Temp at End °F	Peak Temp °F
2089 NE of MP AP4	File10	206.5 to 209	3.5	531.5	675 to 1738	1282	1348	85	46	169.2	212.2	242.1
980 NE of MP MN21	File19	348 to 355	7	335	203 to 873	488	694	89	42	143.3	145.9	179.7
1627 NE of MP MN25	File21	151 to 165	14	327	261 to 915	528	766	73	32	152.5	158.6	181
772 E of MP MN28	File21	310 to 314	4	316	296 to 928	611	646	67	29	158.6	158.6	169.2
2599 E of MP MN45	File23	164 to 169	5	185.5	455 to 826	604	677	69	23	146.8	147.2	155.6
582 SW of MP MN59	File24	264 to 270	6	276.5	319 to 872	478	611	68	31	130.1	134	179.3
1163 W of MP MN64	File25	227 to 236	9	288	288 to 864	470	633	70	28	136.7	138.9	156.4
1530 SW of MP MN68	File25	490 to 499	9	314	335 to 963	528	704	74	30	144.6	145.9	157.8
49 E of MP MN69	File25	556 to 568	12	394.5	352 to 1141	665	861	72	34	149	162.6	178.4
717 NE of MP MN70	File25	631 to 640	9	333.5	538 to 1205	750	930	71	32	168.7	170.5	188.9
1022 E of MP AB99	File29	121 to 132	11	658	167 to 1483	756	1035	120	44	144.6	148.5	170.1
1768 E of MP AB102	File29	244 to 250	6	290	592 to 1172	770	922	85	35	164.8	163	180.6
1525 NE of MP AB115	File30	561 to 575	14	1010	-261 to 1759	580	1038	81	43	138.4	147.6	167.9
No GPS	File31	92 to 98	6	525.5	515 to 1566	984	1081	83	41	190.3	190.7	204.3
No GPS	File31	166 to 172	6	403	807 to 1613	1172	1280	78	31	203.9	203.9	221.9
821 SE of MP AB125	File32	334 to 338	4	255.5	743 to 1254	938	1005	66	29	204.8	204.8	213.6
639 SE of MP AB126	File32	387 to 393	6	658	486 to 1802	1004	1176	71	41	211.4	211.4	215.3
2129 SE of MP AB128	File33	72 to 78	6	899	445 to 2243	1142	1486	94	44	214.9	232	266.3
29 NE of MP AB131	File34	90 to 110	20	378.5	915 to 1672	1218	1520	95	37	224.5	236.4	250.5
2136 SW of MP AB138	File34	411 to 426	15	719	408 to 1846	1015	1413	90	40	189.4	242.6	245.2
673 SW of MP AB140	File35	70 to 90	20	749	731 to 2229	1272	1710	92	51	221	276.4	278.2
464 W of MP AB143	File36	131 to 144	13	1138.5	366 to 2643	1170	1686	107	50	222.3	227.2	247
2455 NE of MP AB158	File37	46 to 93	47	1371.5	-361 to 2382	658	2202	148	55	144.1	310.7	330
2579 NE of MP AB160	File38	546 to 557	11	590.5	308 to 1489	520	996	141	33	130.5	134	179.3

Table G.6. Significant Sustained Oscillations During Braking–June 18, 2005

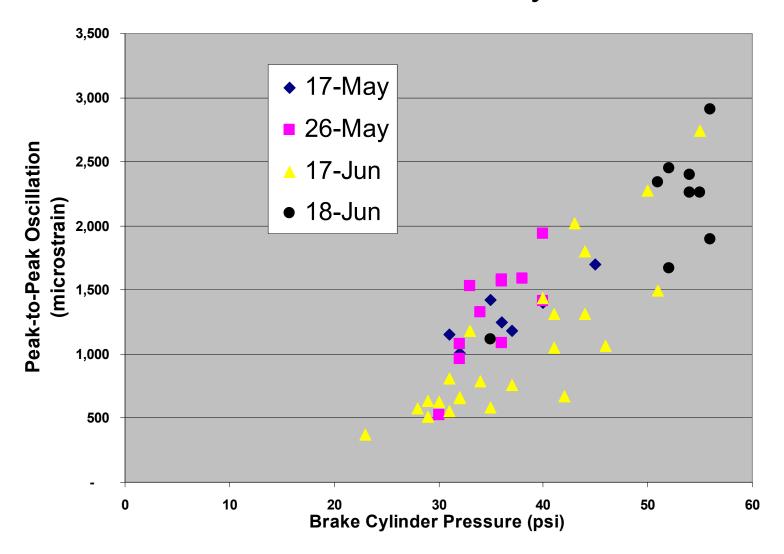
Geographic Location	File	Time Span in the File (secs)	Time Dura- tion in Secs	Max Avg- to- Peak Strain	Values for Peak and Valley [uE]	Avg Strain @ Start	Avg Strain @ End	Speed (mph)	Brake Cyl Press	Temp at Start °F	Temp at End °F	Peak Temp °F
2396 NE of MP AB202	File03	476 to 498	22	947.5	387 to 2282	1309	1918	116	56	100.6	253.5	252.7
2619 S of MP AB178	File05	530 to 551	21	1226	-367 to 2085	438	1483	130	52	115.6	244.3	243.4
691 SW of MP AB170	File06	242 to 258	16	558.5	768 to 1885	971	1406	113	35	169.2	198.2	225
4 SW of MP AB162	File06	503 to 540	37	1200.5	-214 to 2187	650	2154	150	54	145.4	266.3	298.8
1222 SW of MP AB159	File07	32 to 56	24	1132	540 to 2804	1491	2315	120	54	249.6	301.4	327.8
732 SW of MP AB156	File07	153 to 180	27	835	1051 to 2721	1719	2512	120	52	282.5	314.6	341.9
784 SW of MP AN13	File22	211 to 226	15	1128.5	-687 to 1570	285	925	110	55	107.2	156	199.9
1211 SW of MP AN19	File22	446 to 453	7	1171.5	-442 to 1901	643	938	120	51	143.3	148.5	179.3
1748 SW of MP AN55	File24	578 to 595	17	1454.5	196 to 3105	1466	1974	133	56	226.7	261.9	325.6

Outer Discs Versus Center Discs

- Sustained Oscillations Were Observed On The Outer And Center Discs During Test On May 17, Phase 1 Test
- When The Sustained Oscillations Were Observed On One Disc, They Were Also Observed On The Other
- The Magnitude Of The Sustained Oscillations On The Center Disc Was 2.9 to 3.4 Times The Maximum Peak-To-Peak Oscillations Found On The Center Discs
- The Duration Of The Oscillations On The Outer Discs
 Was The Same As That On The Center Discs
- The Oscillations Were Out Of Phase By 12 Degrees
 Which Corresponds To The 12 Degrees Offset Of The
 Instrumented Spokes On The Outer And Center Discs


Sustained Oscillations On The Outer Discs

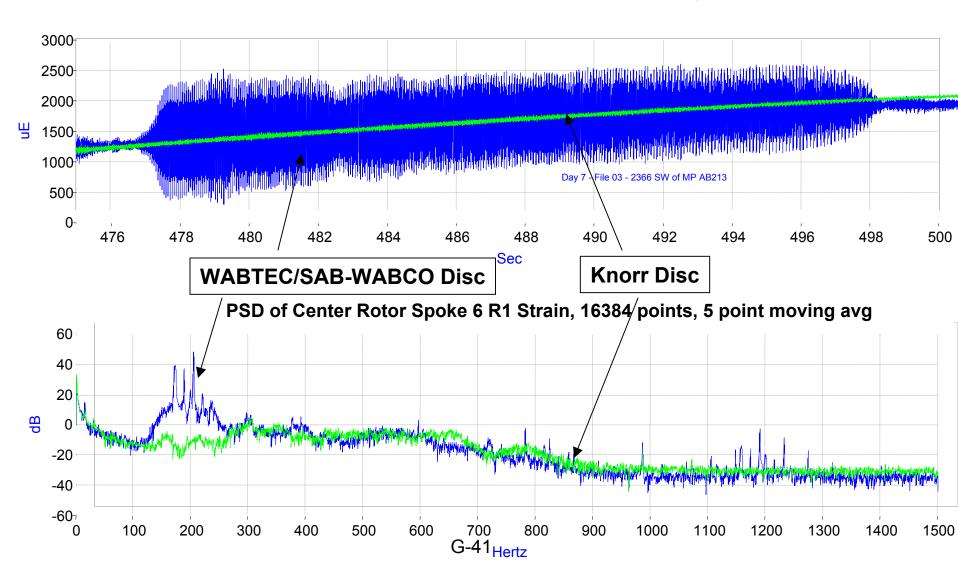
Geographic Location	File	Time Span in the File (Secs)	Time Duration In Secs	Max Pk-to-Pk	Ratio of Center to Outer Disc Peak-to-peak
1685 SW of MP E17	File17	218 to 246	28	587	2.90
190 SW of MP AN13	File19	142 to 164	22	498	2.86
516 SW of MP AP25	File20	1251 to 1257	6	385	3.23
2303 NE of MP AP65	File21	1204 to 1224	20	508	2.76
947 NE of MP AP71	File21	1475 to 1507	32	452	2.62
1573 W of MP AP91	File21	2392 to 2404	12	299	3.36
471 SW of MP AP79 Gunpow	File21	2019 to 2022	3	391	2.95


Influence Of Brake Cylinder Pressure On Sustained Oscillations

- Based On The Tables
- Cross Plot–Maximum Strained BOP (Peak-to-Peak) Versus Brake Cylinder Pressure

Sustained Oscillations Peak BOP Strain Versus Brake Cylinder Prossure

Sustained Oscillations Peak BOP Strain Versus Brake Cylinder Pressure



Sustained BOP Oscillations In Braking

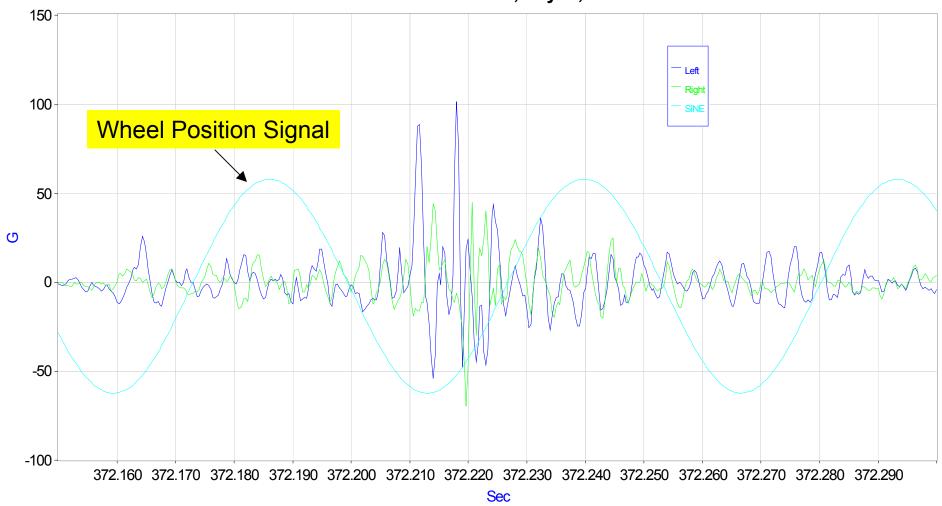
- 51 Occurrences Of Sustained BOP Oscillations
- Total Duration–774 Seconds
- Only When The Instrumented Axle Was In The Lead

Day 7–File 03

Center Rotor Spoke 6 R1, blue = WABTEC/SAB-WABCO Disc, green = Knorr Disc

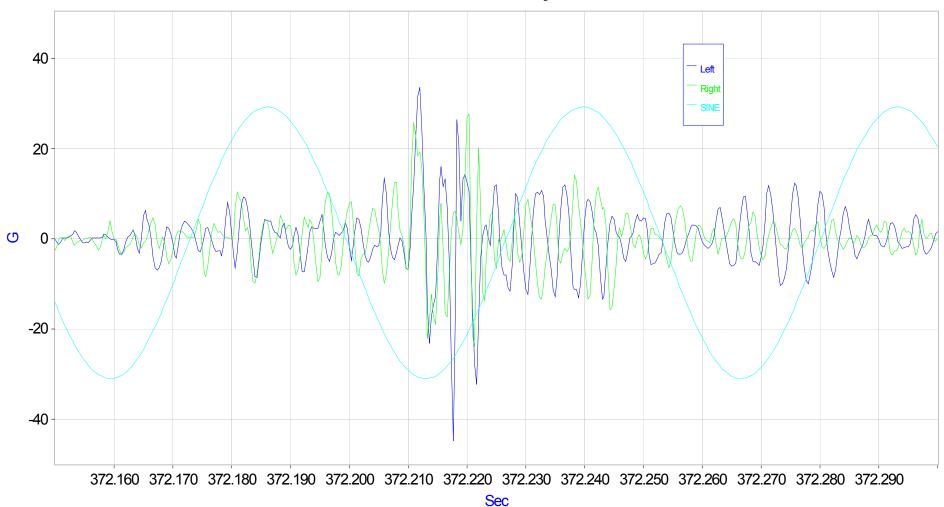
Relationship Of BOP Strain To Acceleration Difference

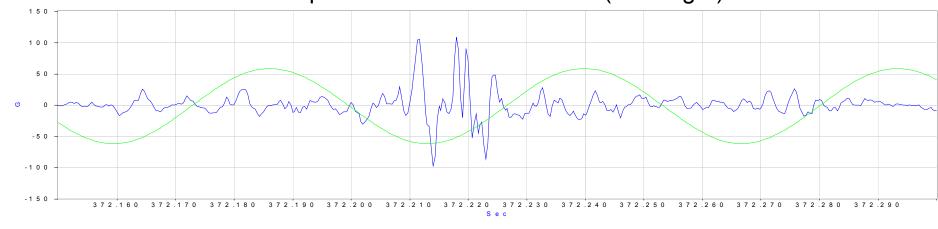
Relationship Of BOP Strain To Acceleration Difference

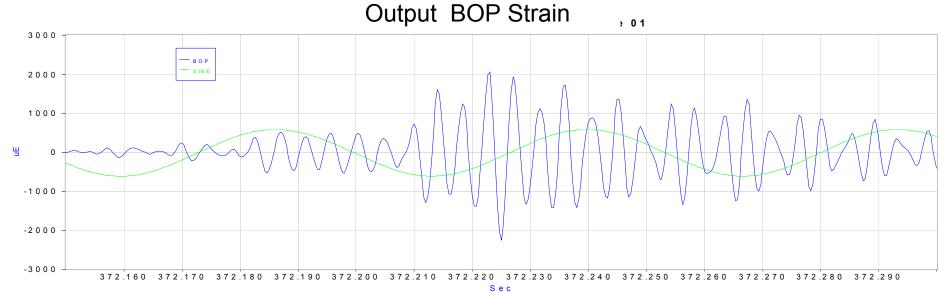

- Acceleration Difference Is Related To The BOP Strain Observed During Testing
- For A Single Acceleration Difference Peak, the BOP Strain is ~7.5 με/G
- Sometimes The Acceleration Difference Has Multiple Large Peaks Within A Half Wheel Revolution
- Bombardier Requested That Two Specific Events Be Reviewed

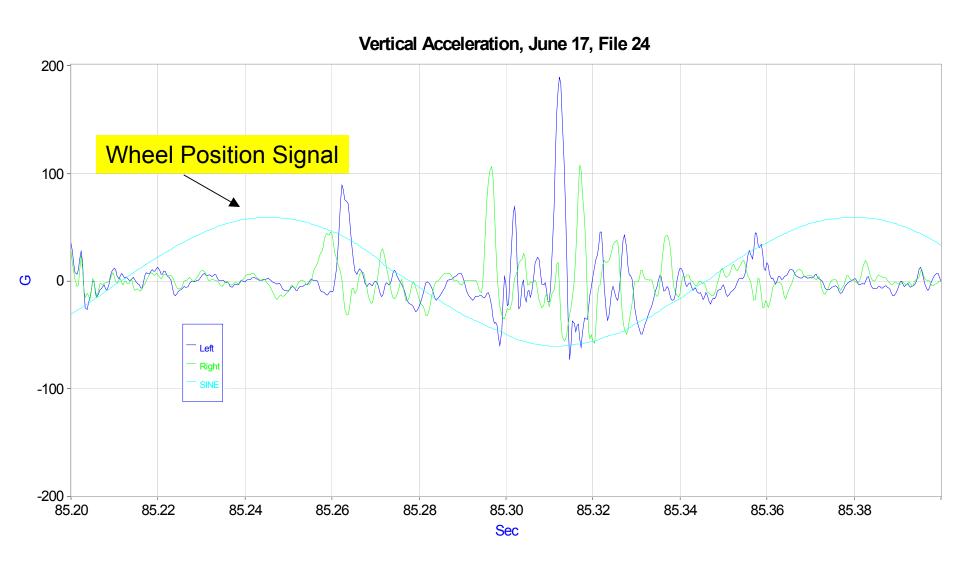
Two Cases

- Case 1
 - May 27 (File 1 @ ~372 seconds)
 - Peak Acceleration Difference–102 g's
 - BOP Magnitude Response-~2,200 με
 - Minimum BOP Strain -2258 με
 - Maximum BOP Strain +2051με
- Case 2
 - June 17 (File 24 @ ~85 seconds)
 - Peak Acceleration Difference–189 g's
 - BOP Magnitude Response-~1,000 με
 - Minimum BOP Strain -1033 με
 - Maximum BOP Strain +889με

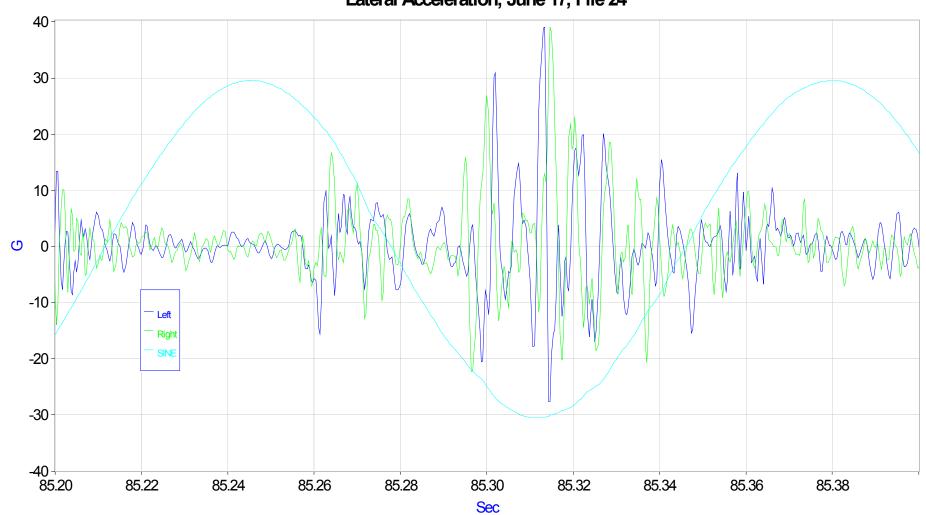

Case 1 Right And Left Acceleration


Case 1 Lateral Acceleration

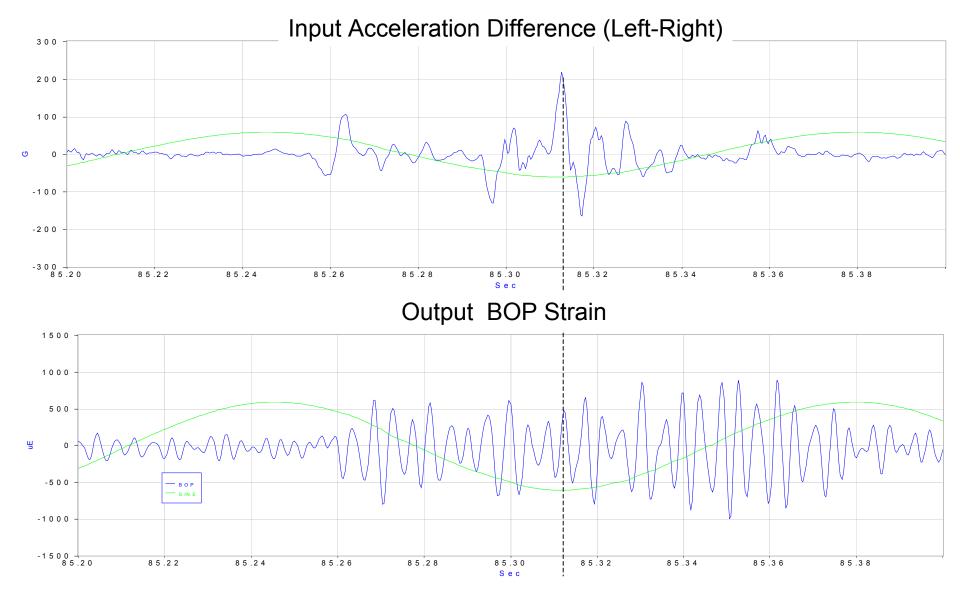

Lateral Acceleration, May 27, File 01


Case 1 May 27

Input Acceleration Difference (Left-Right)

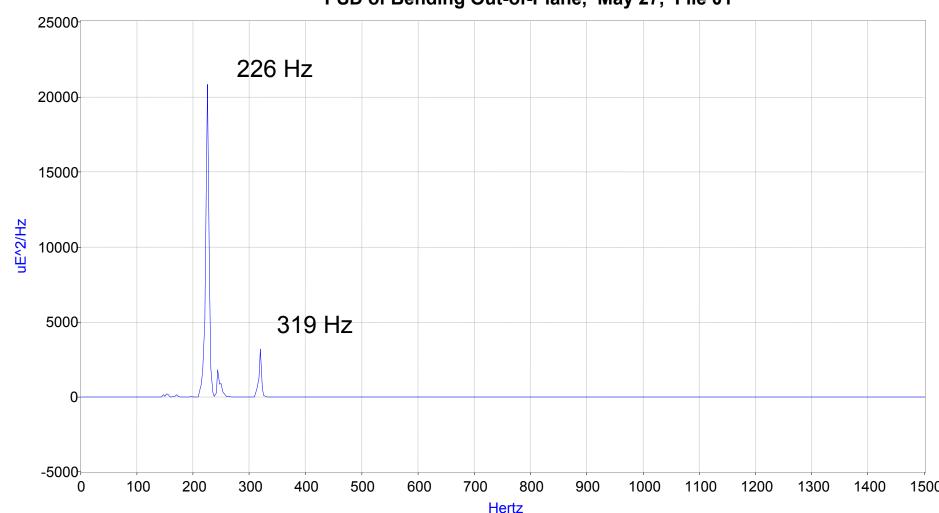


Case 2 Right And Left Acceleration

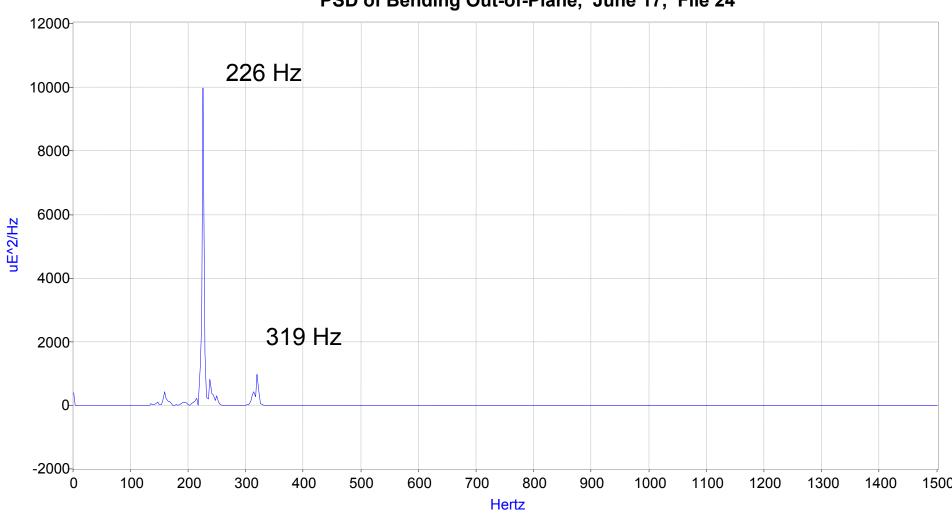


Case 2 Lateral Acceleration

Lateral Acceleration, June 17, File 24


Case 2 June 17

G-50


PSD Of BOP Strain, Case 1

PSD of Bending Out-of-Plane, May 27, File 01

PSD Of BOP Strain, Case 2

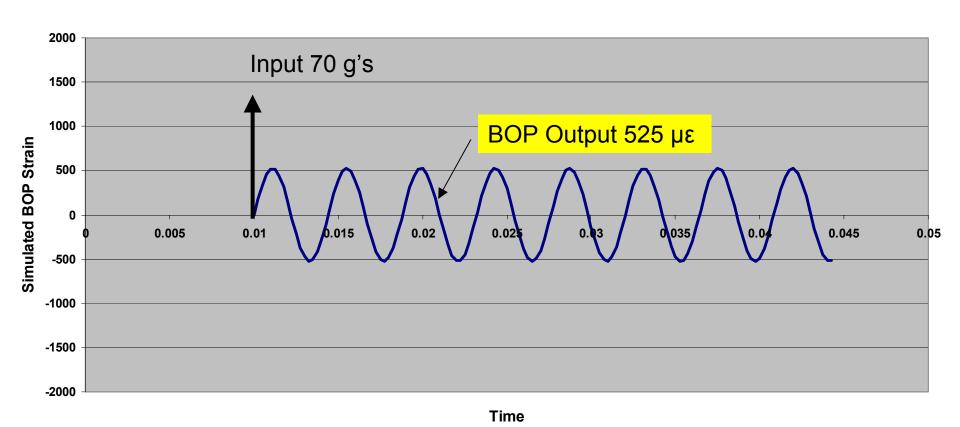
PSD of Bending Out-of-Plane, June 17, File 24

Observations

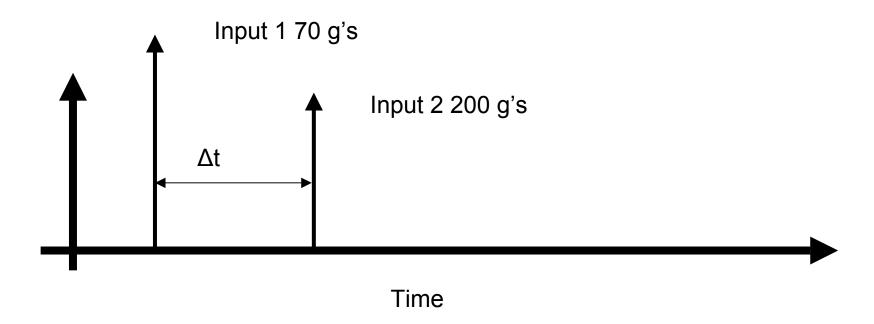
- The Largest Peak In The Spectrum Of The BOP Strain Is Observed At 227 Hz
- The Second Largest Peak In The Spectrum Of The BOP Strain Is Observed At 319 Hz
- The PSD Level Of The Largest Peak At 227 Hz Is 10 Times The Level Of The Second Largest Peak At 319 Hz

Theory

- A Possible Cause For BOP Strains Not Being Proportional To Large Peak Acceleration Differences Is That The Results Of Two Accelerations Peaks Do Not Add Arithmetically But Add Vectorially
- This Allows For Both Constructive And Destructive Interference In BOP Strain Response
- The Following Slides Provide A Conceptual Description Of This Effect

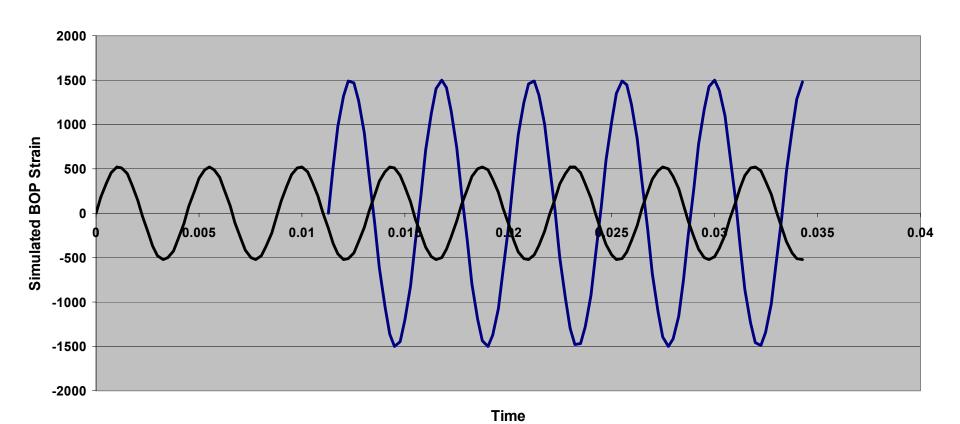

Terminology

- Interference Constructively
 - When superposition leads to a maximum possible intensity
- Interference Destructively
 - When superposition leads to zero intensity
- Interference
 - Between the limits of interference constructively and interference destructively


Reference: *The Physics of Vibrations and Waves*, H.J. Pain

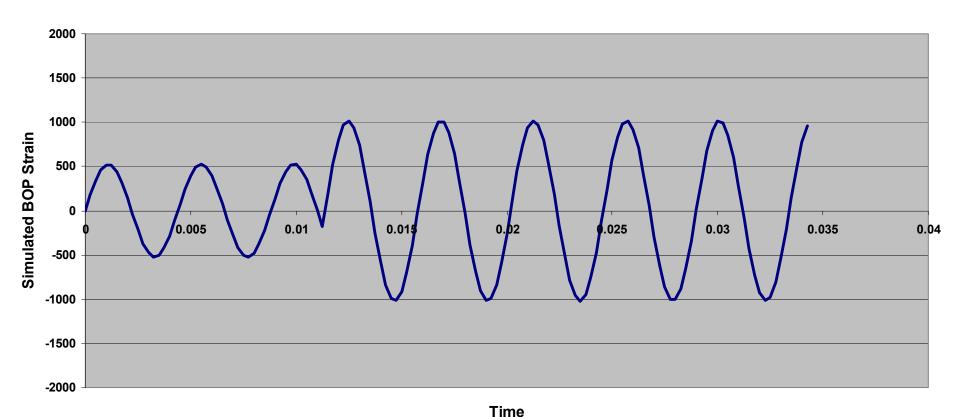
Theory

BOP Strain versus Time

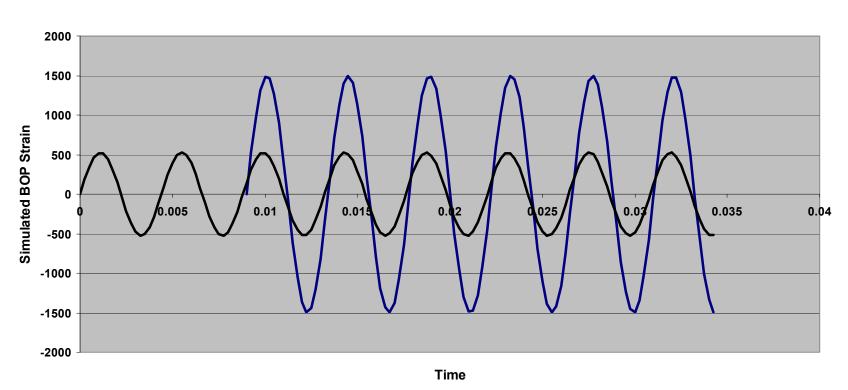


Two Inputs

Example 1

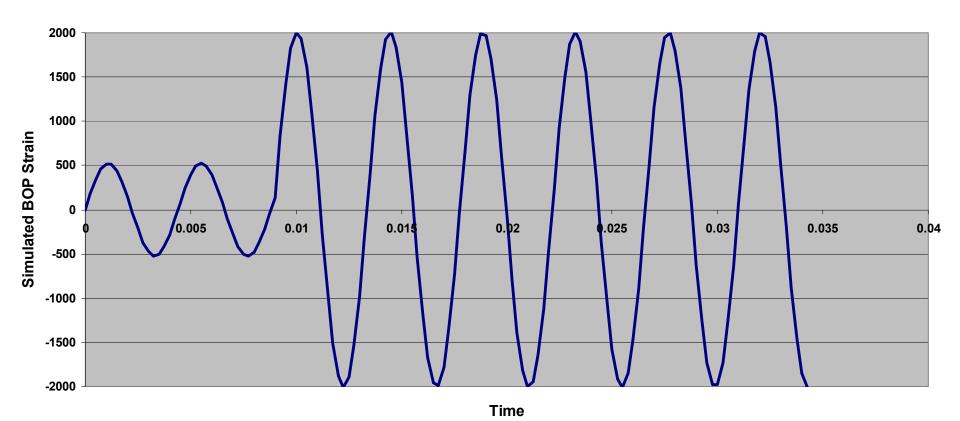

BOP Strain versus Time Delta T = 0.01125 seconds

Example 1 Combined BOP Strain From The Two Inputs


Partial Destructive Interference

BOP Strain versus Time

Example 2


BOP Strain versus Time Delta T = 0.009 seconds

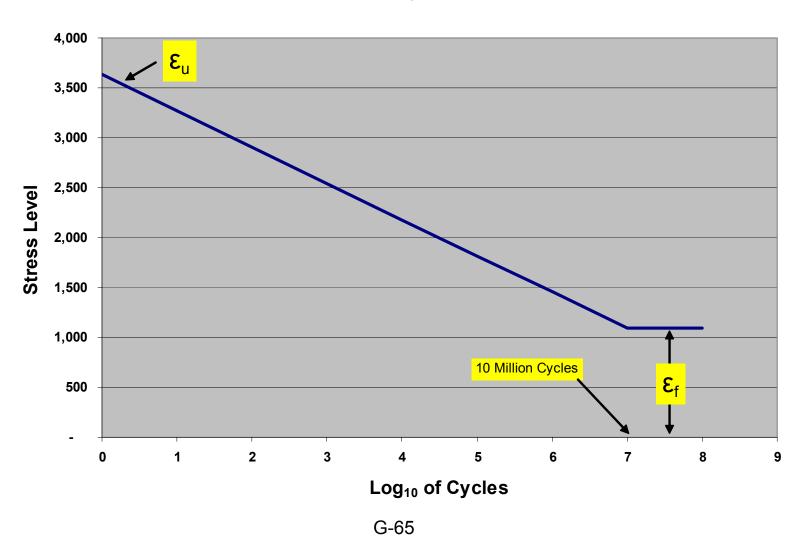
Example 2 Combined BOP Strain From The Two Inputs

Partial Constructive Interference

BOP Strain versus Time

Estimate Of Fatigue Effects And Goodman Plots

Fatigue


- Process In Which Damage Accumulates Due To The Repetitive Application Of Loads
- Strains Due To These Loads Are Well Below The Yield Strain Of The Material
- Fatigue Consists Of:
 - Crack Initiation
 - Crack Propagation
 - Final Fracture
- Spoke Cracks In WABTEC/SAB-WABCO Disc May Be Influenced By Fatigue

ASTM Definition

- Fatigue Life Is The Number Of Cycles Of Stress Or Strain Of A Specific Character That A Given Specimen Sustains Before Failure Of A Specific Nature Occurs
- Fatigue Strength Is The Hypothetical Value Of Stress At Failure For Exacting N Cycles
- Fatigue Limit, S_f, Is The Limiting Value Of Median Fatigue Strength As N Becomes Very Large

SN Curve

S-N Diagram

Table G.7. Key Stress/Strain Values for WABTEC/SAB-WABCO Disc

WABTEC/SAB-WABCO Disc								
Value	Stress (Mpa)	Stress (psi)	Compared to Ultimate	Micro- Strain	Source			
Young's Modulus	210,345	30,500,000			Steel			
Ultimate Strength	752	109,000	100%	3,574	SHTL			
Yield Strength	550	79,750	73%	2,615	SHTL			
Endurance Limit	226	32,700	30%	1,072	30% Ultimate			
Pre-Strain (Press On)	84	12,200	11%	400	see Appendix H			
Pre-Strain (As Built)	126	18,300	17%	600	see Appendix H			
Pre-Strain (Total New)	210	30,500	28%	1,000	see Appendix H			
True Fracture Stress (European)	1,232	178,689	164%	5,859	SHTL			
True Fracture Stress (USA)	1,059	153,521	141%	5,033	SHTL			

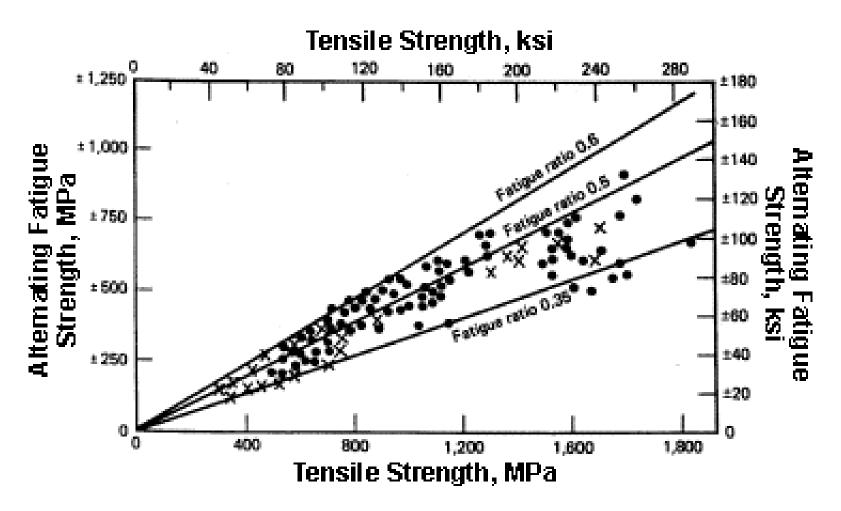

SHTL- Stork Herron Testing Laboratories

Table G.8. Key Stress/Strain Values for Knorr Disc

Value	Stress (MPa)	Stress (PSI)	Comparison to "Ultimate"	Micro- Strain	Source	
Young's Modulus	210,000	30,450,000	-	-	SWL	
Ultimate Strength	1,050	152,250	100%	5,000	N10193	
Yield Strength	900	130,500	86%	4,286	N10193	
Endurance Limit	300	43,500	29%	1,429	SWL	
Pre-Strain (Press On)	112	16,230	11%	533	see Appendix J	

Provided by Knorr-Bremse

Typical Data

http://www.fatiguecalculator.com/

Other Factors May Lower Fatigue Ratio

- Environment
 - Water
 - Sea Water
- Corrosion Fatigue Effects
- Casting Irregularities

Environment

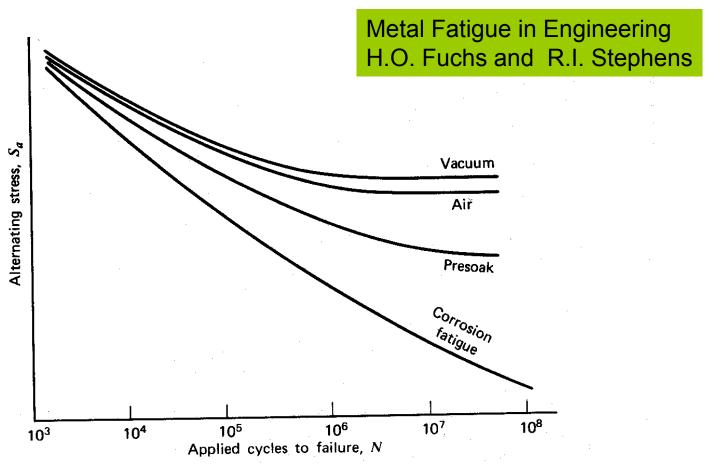


FIGURE 11.3 Relative fatigue behavior under various environmental conditions.

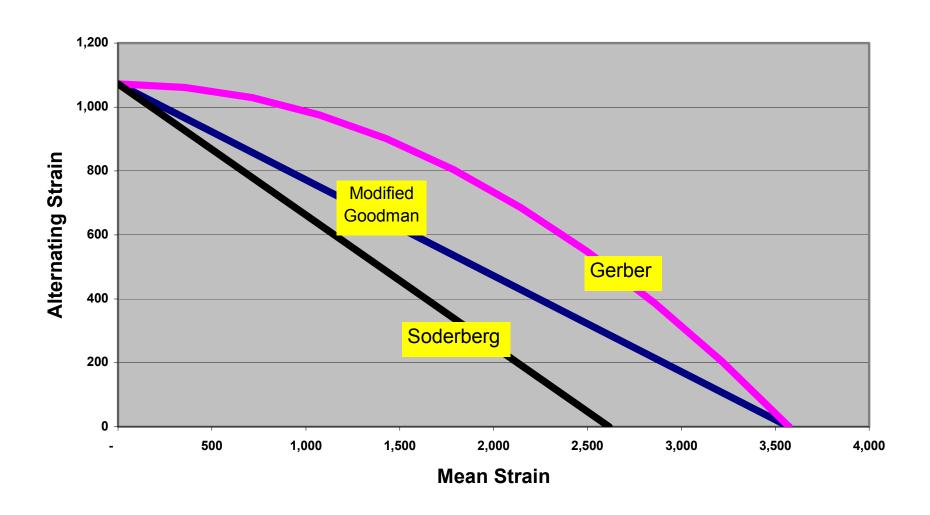
Combined Stress

- Load Conditions
 - $-S_a = Alternating Strain (Zero-To-Peak)$
 - S_m= Mean Strain
- Material Properties
 - Su = Ultimate Strain
 - Sy = Ultimate Strain
 - Sf = Ultimate Strain
- Mean Stress Has A Substantial Influence On Fatigue Behavior

Mean Strain/Alternating Strain Models

Modified Goodman

$$\frac{S_a}{S_f} + \frac{S_m}{S_u} = 1$$

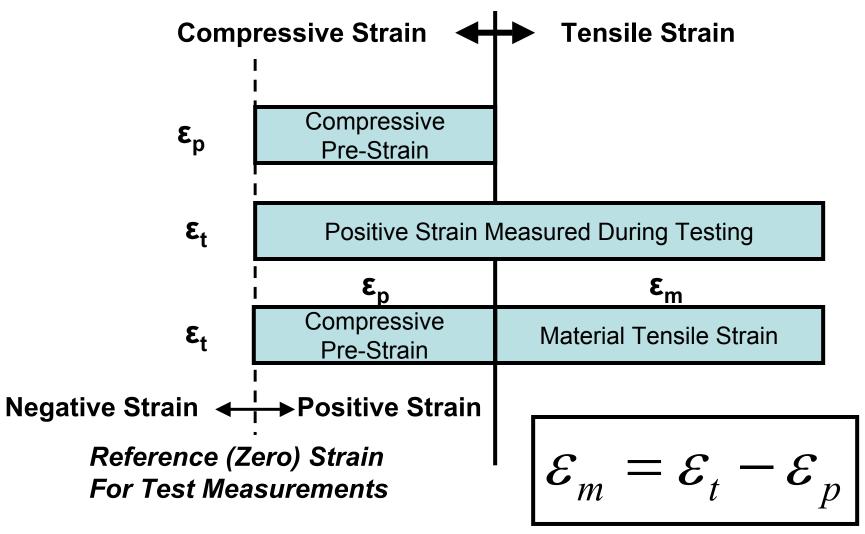

Gerber

$$\frac{S_a}{S_f} + \left(\frac{S_m}{S_u}\right)^2 = 1$$

Soderberg

$$\frac{S_a}{S_f} + \frac{S_m}{S_y} = 1$$

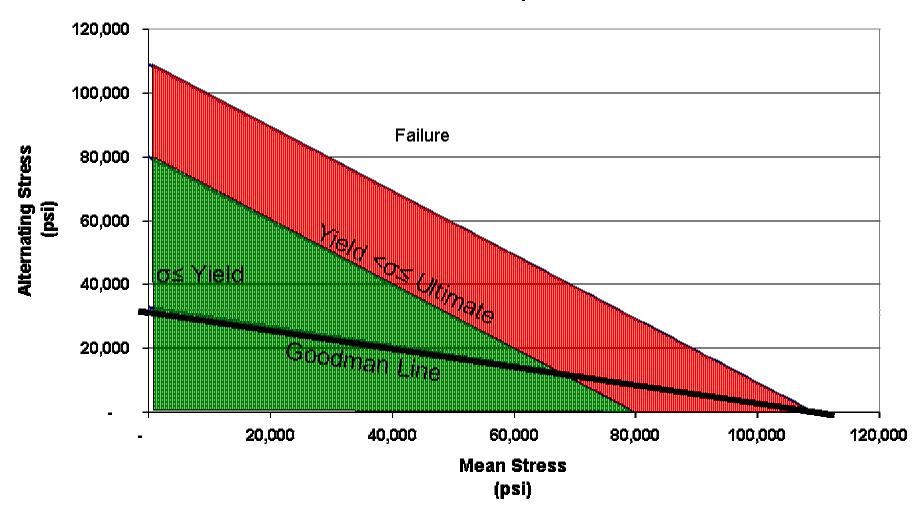
Combined And Alternating Strain



Strain In Spoke

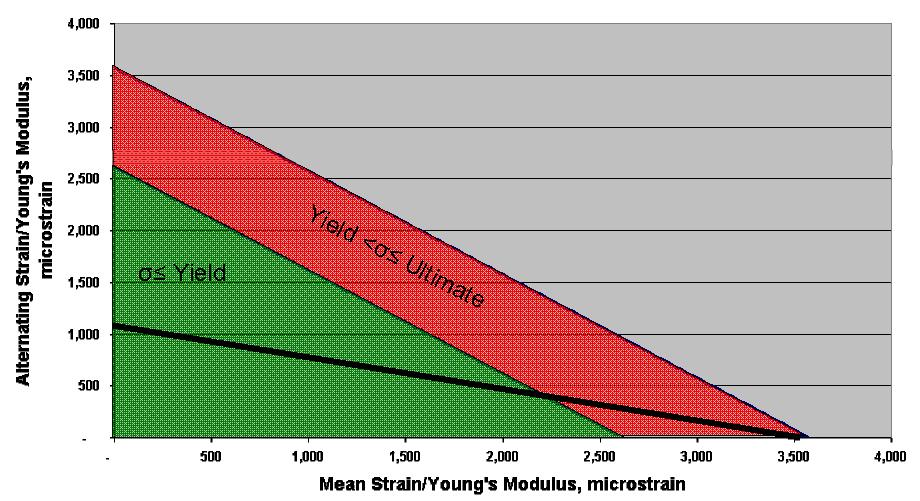
- Pre-Stress (Strain) Due To Manufacturing
- Pre-Stress (Strain) Due To Hub Interference Fit
- Tensile Strain Due To Friction Ring Expansion
- Bending Out-Of-Plane Strain

Compressive Pre-Strain Concept


Material (Zero) Strain

Mean And Alternating Strain

- A Fatigue Prospective Of The Test Data Requires Simultaneous Tabulation Of Mean Strain (Thermal Effect) And Alternating Strain (BOP)
- A Modified Goodman Line Based On Fatigue Limit Of 30% Ultimate Strain Was Used For This Exercise
- This Is Not Intended As A Fatigue Analysis When K Factors Would Be Required But An Exercise To Determine Where In The Data Significant Combinations Of Mean And Alternating Strains Occur
- The Mean (Tensile Strain) Must Account For The Pre-Strain In The Spokes
- Based On Test Of Disc During Press-On Operations And Cutting Of Spokes On Disc Removed From Service, A Value Of 1,000 Microstrain Is Used For The Pre-Stress In The Spoke


Goodman Line in Terms of Stress For WABTEC/SAB-WABCO Disc Based on Material Properties

Transform The Goodman Plot From Stress To Strain

- Formulated Goodman Line In Terms Of Stress
- Transform To Strain By Dividing By Young's Modulus, E
- Indicated Where The Linear Stress-Strain Relationship Exists In The Mean Versus Alternating Plane; Denoted By Green On Plots
- Indicated Where The Non-Linear Relationship Exists In The Mean Versus Alternating Plane (In Excess Of Yield Stress, But Less Than Ultimate Stress); Denoted By Red On Plots

Goodman Line in Terms of Strain For WABTEC/SAB-WABCO Disc Based on Material Properties

Checked on Test Data

- After The Data Was Processed, Checked That All Data Points Fell In The Green Zone (Area of Linear Stress-Strain Relationship)
- Only Cases That Approached Red Zone Were Those Where Vertical Impact Observed During Brake Application Where High Mean Strain Due To Heating Of Disc Observed

A Counting Method

- Calculate Mean Strain Minus 1000 Microstrain
- Calculate BOP Strain Required To Be Above Or Near Goodman Line
- Calculate BOP Strain
- Check If BOP Strain Is Near The Goodman Line
- If Yes, Calculate Cycles And Time Duration
- Record Mean Strain, Alternating Strain, Brake
 Pressure, Number Of Cycles, And Time Duration

Table G.9. Count of Cycles Near Limits

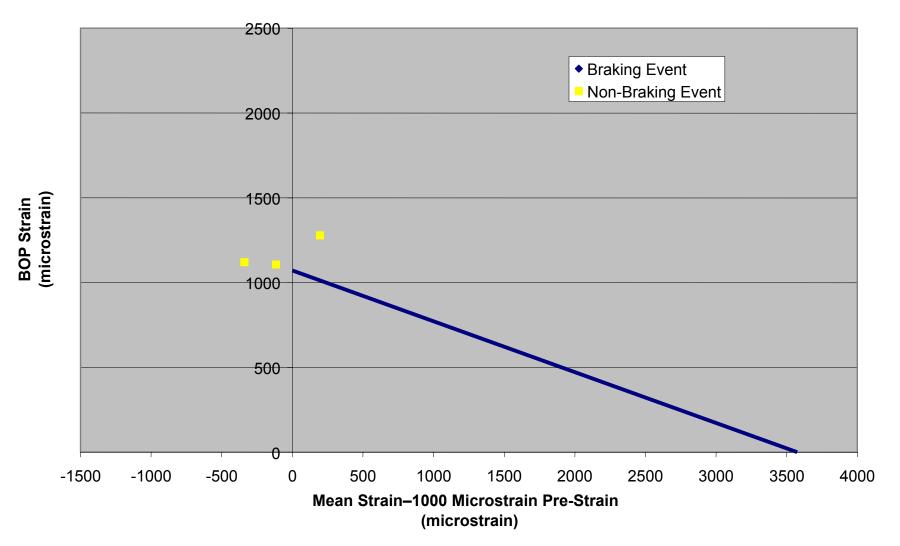
Goodman Plots Cycles

		Coulinain Lieu Cycles									
		WABTEC/SAB-WABCO Disc Axle 1							Knorr Disc Axle 2		
		Center Disc				Outer Disc				Center Disc	
		Spoke 3		Spoke 6		Spoke 3		Spoke 6		Spoke 6	
	Date	NB	В	NB	В	NB	В	NB	В	NB	В
Phase 1	16-May	n/a	n/a	4.5	0	n/a	n/a	5.5	0	n/a	n/a
	17-May	n/a	n/a	11.5	55	n/a	n/a	1	0	n/a	n/a
Phase 2	26-May	12	14	9	20	n/a	n/a	n/a	n/a	n/a	n/a
	27-May	6.5	0	10.5	0	n/a	n/a	n/a	n/a	n/a	n/a
Phase 3	17-Jun	2	2754	5	3156.5	n/a	n/a	n/a	n/a	0	0
	18-Jun	5	7074	6	6947	n/a	n/a	n/a	n/a	0	0

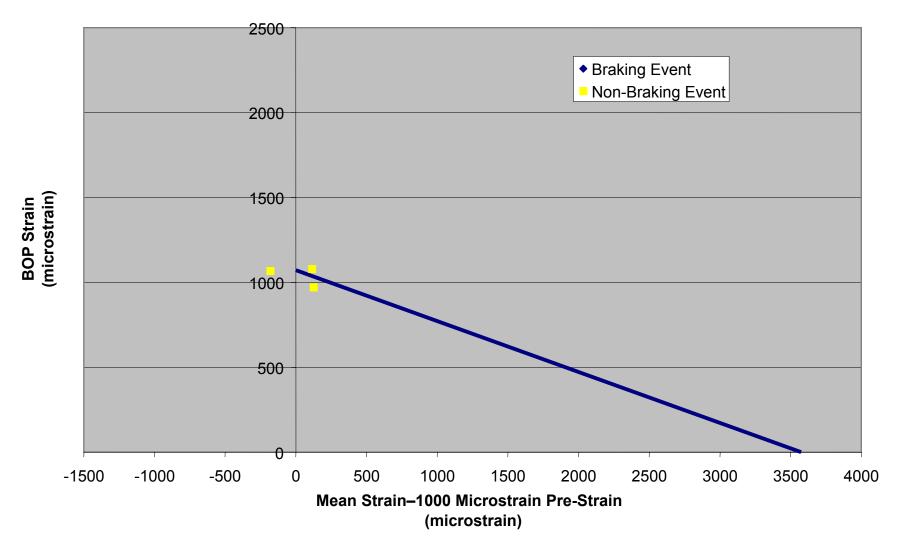
n/a Test Plan did not include this measurement

B Braking

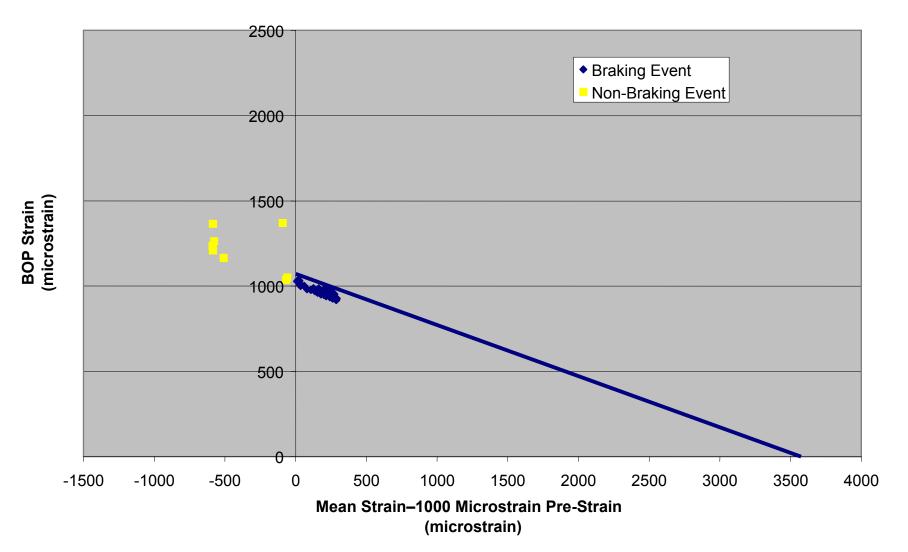
NB Not Braking

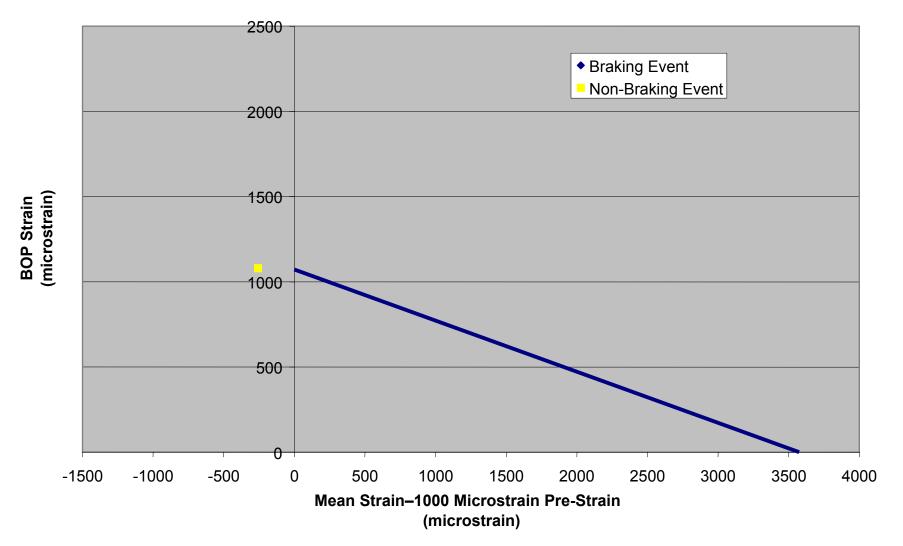

Figures Included

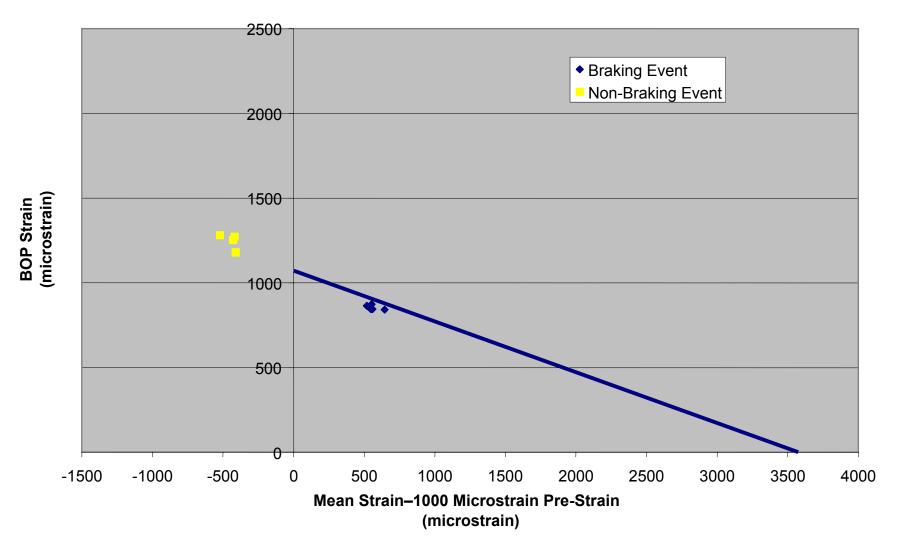
- Phase 1
 - Center Disc Spoke 6
 - Outer Disc Spoke 6
- Phase 2
 - Center Disc Spoke 6
 - Outer Disc Spoke 6
 - Center Disc Spoke 3
 - Outer Disc Spoke 3
- Phase 3
 - Center Disc Spoke 6
 - Outer Disc Spoke 6
 - Center Disc Spoke 3
 - Outer Disc Spoke 3

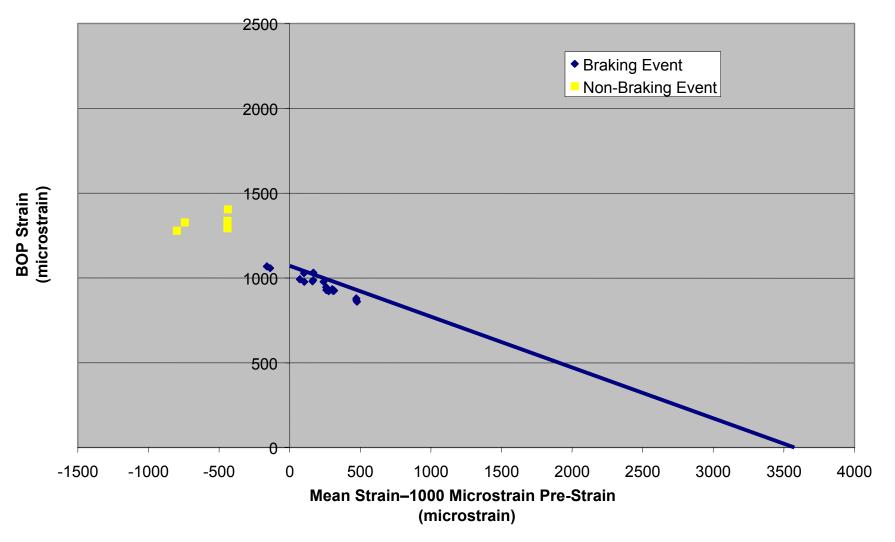

Note:

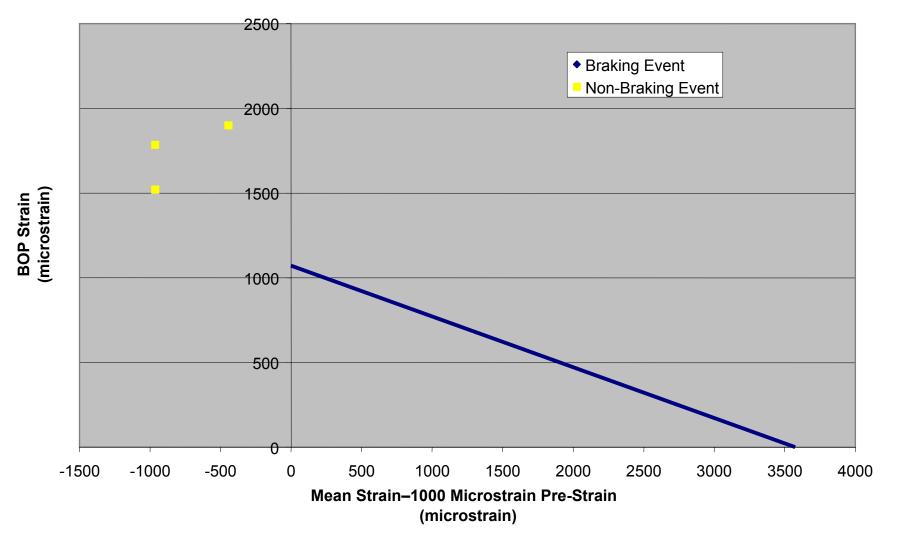
- These figures are based on occurrences of combinations of BOP and mean strains that approach the Goodman line used in the analysis
- A single point in the figures may represent a single cycle or many cycles
- The above table shows the cumulative number of cycles

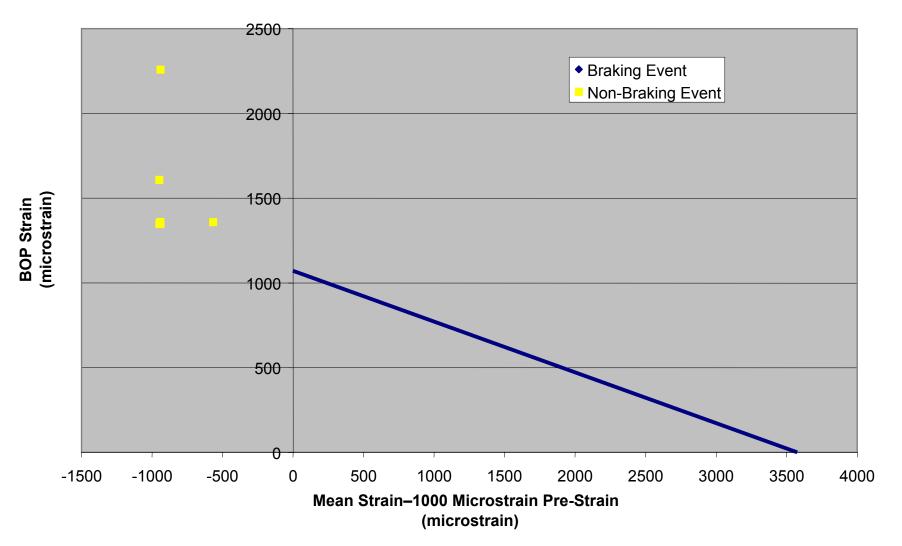

Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-May 16, 2005

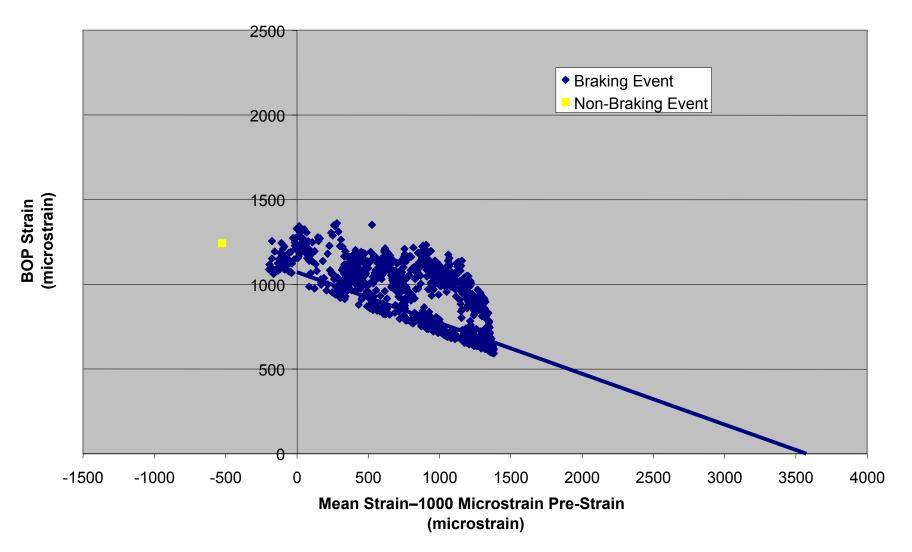

Mean Strain Versus Alternating Strain, Outer WABTEC/SAB-WABCO Disc, Spoke 6-May 16, 2005

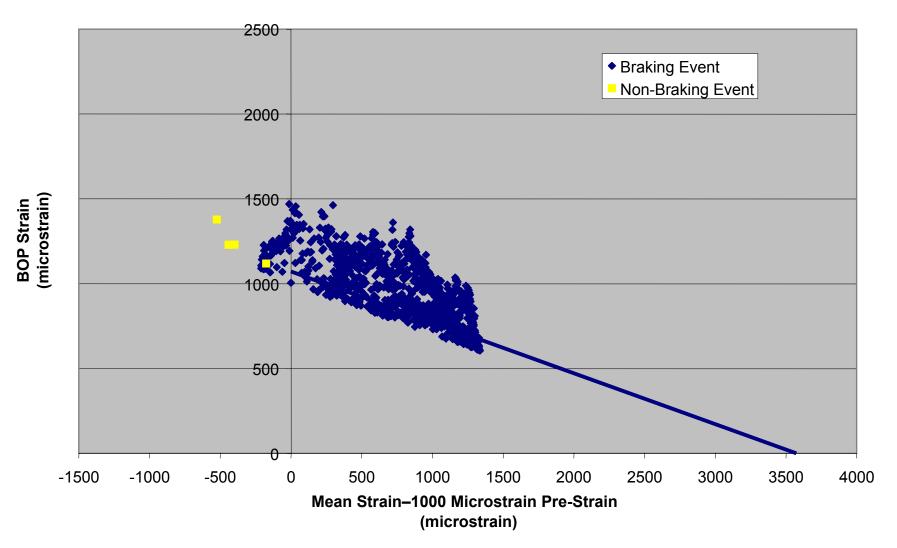

Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-May 17, 2005

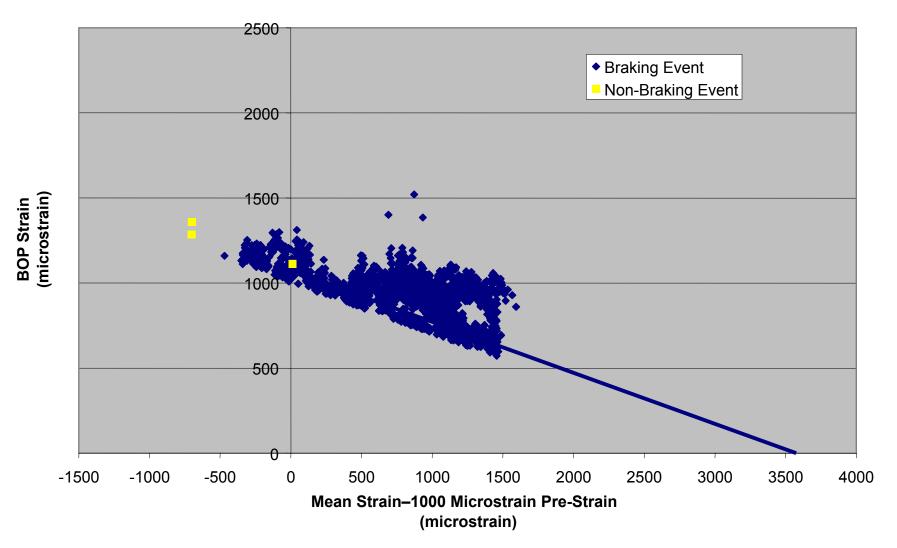

Mean Strain Versus Alternating Strain, Outer WABTEC/SAB-WABCO Disc, Spoke 6-May 17, 2005

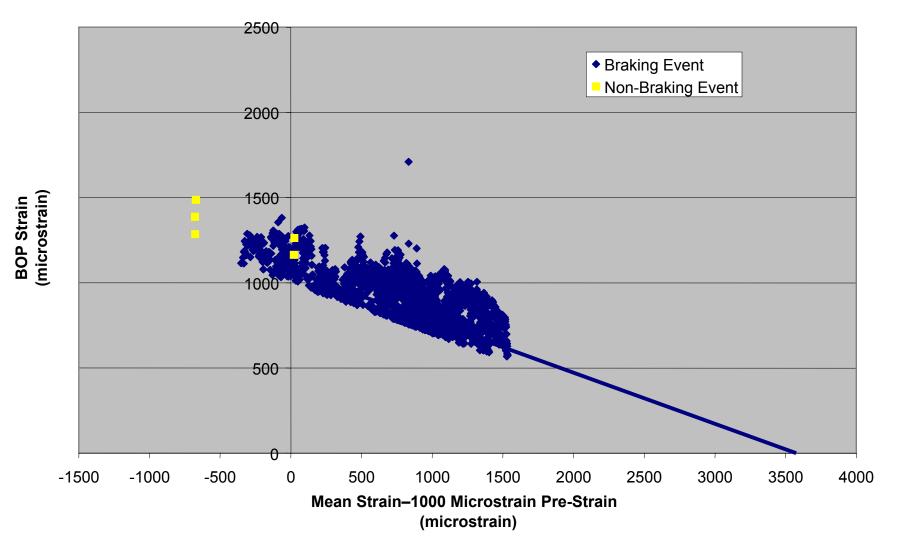

Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 3-May 26, 2005


Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-May 26, 2005


Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 3-May 27, 2005


Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-May 27, 2005


Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 3-June 17, 2005


Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-June 17, 2005

Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 3-June 18, 2005

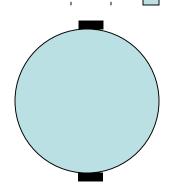
Mean Strain Versus Alternating Strain, Center WABTEC/SAB-WABCO Disc, Spoke 6-June 18, 2005

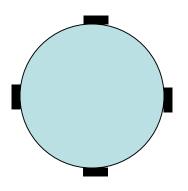
Knorr Disc

- In No Case Did The Knorr Disc Have A Combination Of Mean Strain And BOP Microstrain Levels That Meets The Level Of The Analysis Approach
- This Included Non-Braking And Braking Events

Summary

- Thermal Strains Build Up Quickly, But Have A Long Decay (Time Constant Of 7 Minutes Or More)

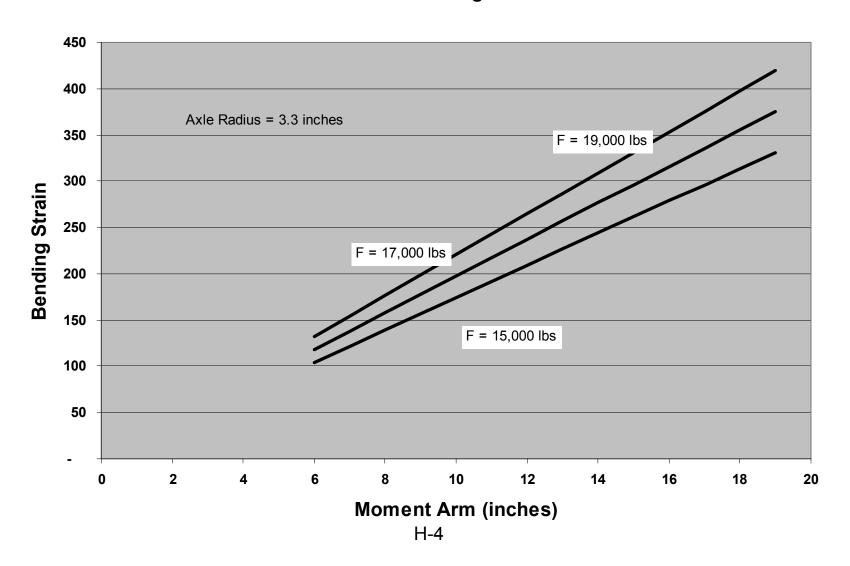

 —Levels Up To 2,500 Microstrain
- Sustained BOP Vibration In Braking Produces Largest Strain
 Observed In Test At ~187 Hz (Only Observed In Lead Axle Cases)
- Caliper Participates In This Vibration
- Shorter Bursts Of BOP Vibration Occur Throughout Testing And May Be Related To Vertical Acceleration Of Wheelset
- Vertical Acceleration On Bearing About Three Times Lateral Acceleration
- BOP Strain Can Have Amplitudes Of 1,500 Microstrain
- Combined Tensile And BOP Strain Can Be In The Range Of 2,700 (TBR) Microstrain Tension Taking Into Account 1,000 Microstrain Pre-Strain
- Yielding Occurs At 2,850 Microstrain (Based On Amtrak Provided Laboratory Test Results)
- The Pre-Stress Levels Were Examined For 2 WABTEC/SAB-WABCO Disc (Small Sample) And One Knorr Disc During Press On


Appendix H. Axle Strain

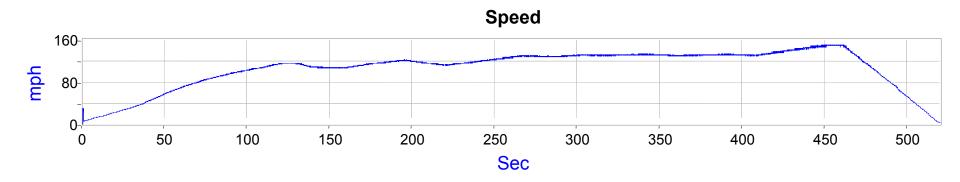
Axle Strain

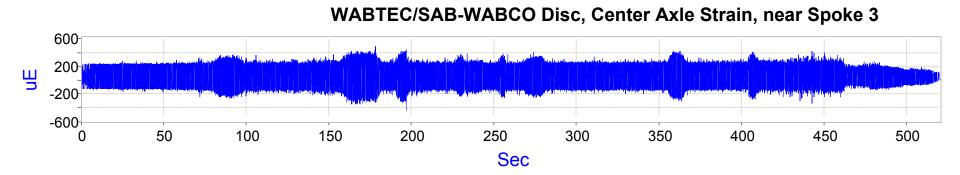
Station 1 Station 2

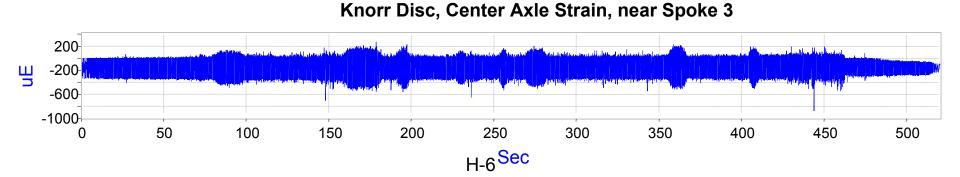
- Axle With WABTEC/SAB-WABCO Discs
 - At Two Stations Along Axle
 - Two Gages Per Station
 - 180° Difference In Circumferential Location
- Axle With Knorr Discs
 - At Two Stations Along Axle
 - Two Gages At One Station
 - Four Gages At The Other Station
 - 180° And 90° Difference In Circumferential Location



Axle Strain Analysis

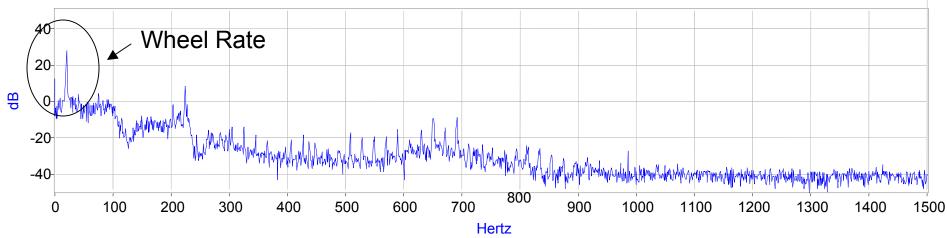

Bending Axle Strain Axle Strain Gages




PSD Of Strain Signals

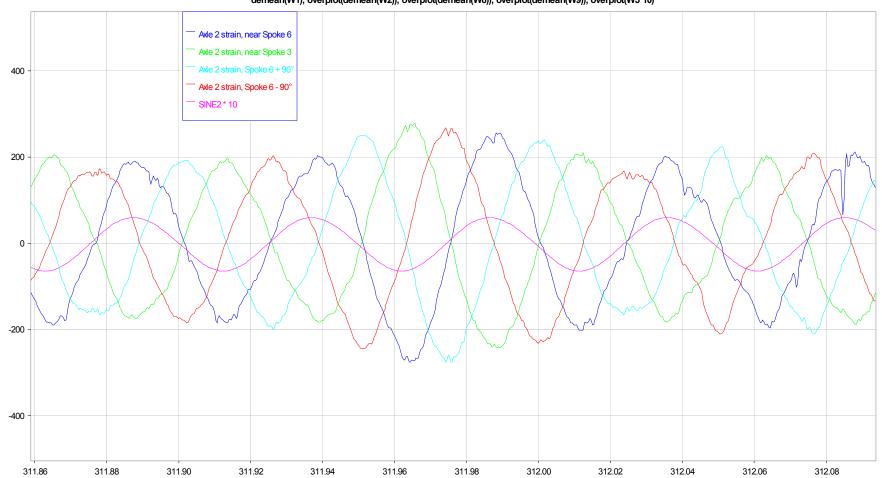
- The PSDs Of Strain Gage Signals
 Revealed Little Information For Either Axle
- Both Showed A Peak At The Wheel Revolution Frequency
- Co-Processing Of Two Channels Of Bending Signals May Provide A More Accurate PSD

Day 7–File 03



Day 7-File 03

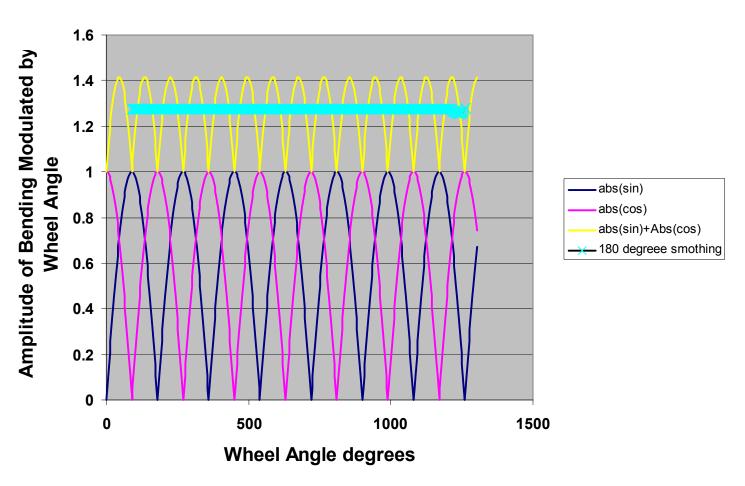
PSD of WABTEC/SAB-WABCO Disc Axle Strain near Spoke 3, 16384 points, 5 point moving avg, t = 300 s, speed = 130 mph



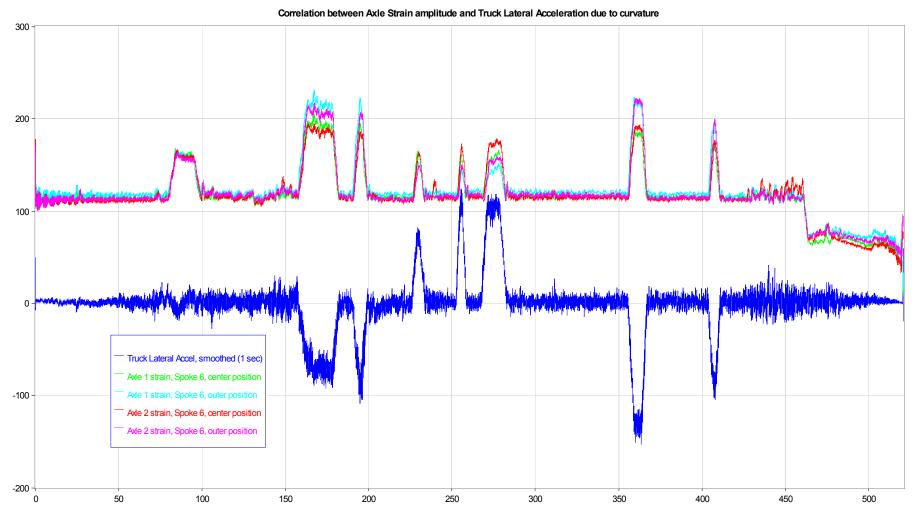
PSD of Knorr Disc Axle Strain near Spoke 3, 16384 points, 5 point moving avg, t = 300 s, speed = 130 mph

Day 7-File 03

demean(W1); overplot(demean(W2)); overplot(demean(W8)); overplot(demean(W9)); overplot(W5*10)

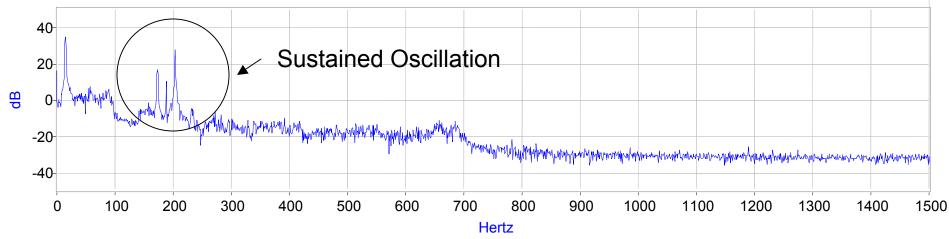


General Observations

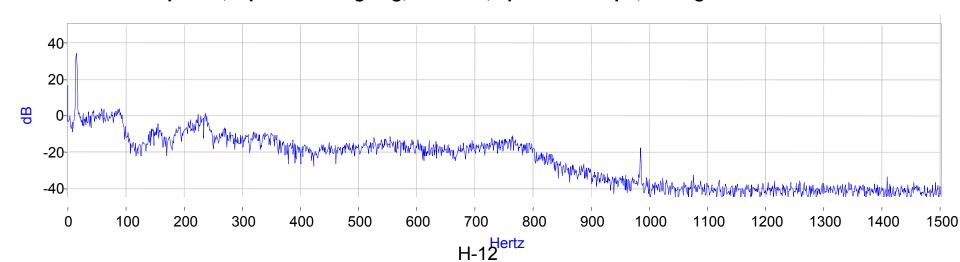

- Modulated By Wheel Rate
- Long-Term Envelope Established By Unbalance On Curves
- This Envelope Can Be Determined By The Following Method
- Add The Absolute Values Of Two Bending Moment Stains That Are 90° Separated And Average Over Several Wheel Cycles
- Resultant Equals The Average Bending Moment Times ~ 1.2
- See Following Example

Axle Bending Moment

Simple Axle Bending Moment Processing

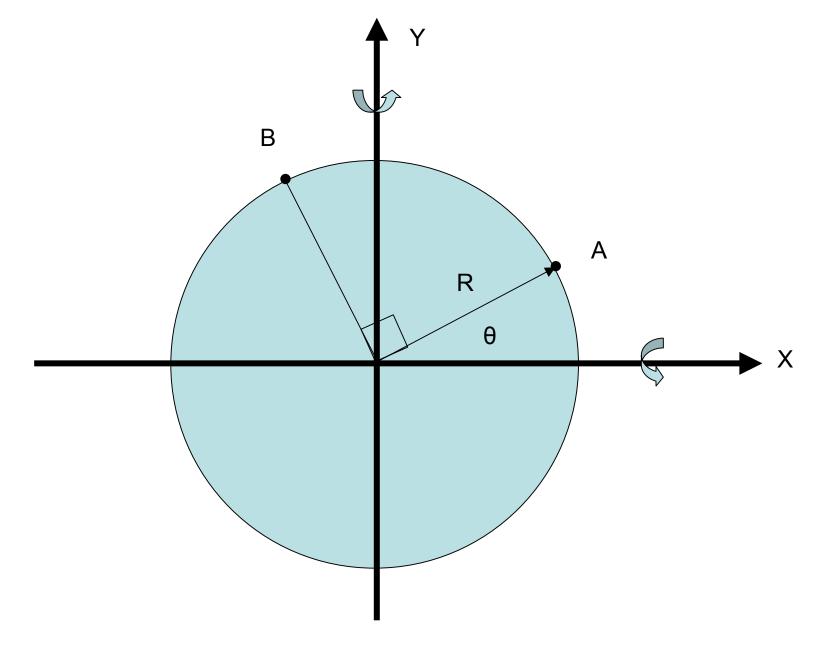


Day 7–File 03 Bending Moment Envelope



June 18-File 03

PSD of WABTEC/SAB-WABCO Disc Axle Strain near Spoke 3, 16384 points, 5 point moving avg, t = 480 s, speed = 97 mph, during sustained oscill



PSD of Knorr Disc Axle Strain near Spoke 3, 16384 points, 5 point moving avg, t = 480 s, speed = 97 mph, during sustained oscill

Extracting The Two Orthogonal Bending Moments

- This Method Can Be Used When Two Bending Moment Gages Are 90° Apart
- The First Bending Moment Is In The Vertical Plane
- The Second Bending Moment Is In The Horizontal Plane
- See The Next Series Of Slides For Method

H-14

Combined Bending Strain

$$\varepsilon_{T} = \varepsilon_{x} + \varepsilon_{y}$$

$$\varepsilon_{x} = \frac{-M_{x}X_{A}}{I}$$

$$\varepsilon_{y} = \frac{-M_{y}Y_{A}}{I}$$

$$\varepsilon_{A} = \frac{M_{x}X_{A}}{I} - \frac{M_{y}Y_{A}}{I}$$

$$X_{A} = R\sin\theta \qquad Y_{A} = R\cos\theta$$

$$\varepsilon_{T} = \frac{M_{x}R\sin\theta}{I} - \frac{M_{y}R\cos\theta}{I}$$
H-15

Strain At Points A And B

$$\varepsilon_{A} = \frac{M_{x}R\sin\theta}{I} - \frac{M_{y}R\cos\theta}{I}$$

$$\varepsilon_{B} = \frac{M_{x}R\sin(\theta + 90^{\circ})}{I} - \frac{M_{y}R\cos(\theta + 90^{\circ})}{I}$$

Given ε_A , ε_B and θ

Two Equations And Two Unknowns M_xAnd M_y

Combined Bending

$$\cos(\theta + 90^{\circ}) = \cos\theta\cos90^{\circ} - \sin\theta\sin90^{\circ} = -\sin\theta$$
$$\sin(\theta + 90^{\circ}) = \sin\theta\cos90^{\circ} + \cos\theta\sin90^{\circ} = \cos\theta$$

$$\varepsilon_{A} = \frac{M_{x}R\sin\theta}{I} - \frac{M_{y}R\cos\theta}{I}$$

$$\varepsilon_{B} = \frac{M_{x}R\cos\theta}{I} + \frac{M_{y}R\sin\theta}{I}$$

Combined Bending

$$\mathbf{M}_{\mathbf{x}} = \left(\frac{I}{R}\right) (\varepsilon_{A} \sin \theta + \varepsilon_{B} \cos \theta)$$

$$\mathbf{M}_{\mathbf{Y}} = \left(\frac{I}{R}\right) (+\varepsilon_{A} \cos \theta - \varepsilon_{B} \sin \theta)$$

Extracting The Two Orthogonal Bending Moments

- This Approach Has Not Been Implemented
- It Would Be Implemented To:
 - Observe The Full Dynamic Behavior Of Disc Bending
 - Observe The Bending Modes Of The Axle In Both The Horizontal And Vertical Planes
 - Since The BOP Mode During Braking Has Maximum Displacement In The Horizontal Plane, This Information Could Be Important To Understand The Axle Disc Interaction

Appendix I. Temperature

<u>Section</u>	<u>Page</u>
Basic Concepts	I-2
Temperature Measurements	I-8
Spoke Strains and Temperature	I-21
Heating and Cooling of Discs	I-36

Basic Concepts

Ambient Temperatures

- Temperatures Measured On The Disc Are The Combined Effect Of The Heating Of The Disc During Braking And Ambient Temperature
- Ambient Temperatures For Each Test Day Are Provided In The Following Table

Table I.1. Ambient Temperatures Over The Test Days At Four Primary Locations

Temperatures on the Test Days						
Day	Wash DC	Philadelphia	New York	Boston	Max-Min	
16th May	65	68	63	50	18	
17th May	68	70	63	58	12	
26th May	70	58	60	53	17	
27th May	80	82	76	59	23	
17th Jun	75	70	71	58	17	
18th Jun	80	75	74	56	24	

Note: Temperatures Noted Above Are Approximately The Ambient Temperatures At The Locations Listed When Trainset 10 Arrived At The Station

Source: www.wunderground.com

Disc Expansion Model

- Simple Model To Determine Reasonable Values Of Mean Spoke Strain Due To Temperature Increase of Friction Rings
- Based On Friction Ring Unrestrained Expansion
- Assumes Spokes Follow Friction Ring

Thermal Expansion Of Friction Rings

Circumference of friction plate expands with increased temperature α = coefficient of thermal expansion

$$C(T) = C_0(1 + \alpha T)$$

 R_0 Radius at point A

R Radius at point A with increased temperature

$$(R - R_0) = C_0 \alpha T / 2\pi$$

Strain in Spoke of Length L due to temperature change

$$(R-R_0)/L = C_0 \alpha T/2\pi L$$
 = Tensile Strain

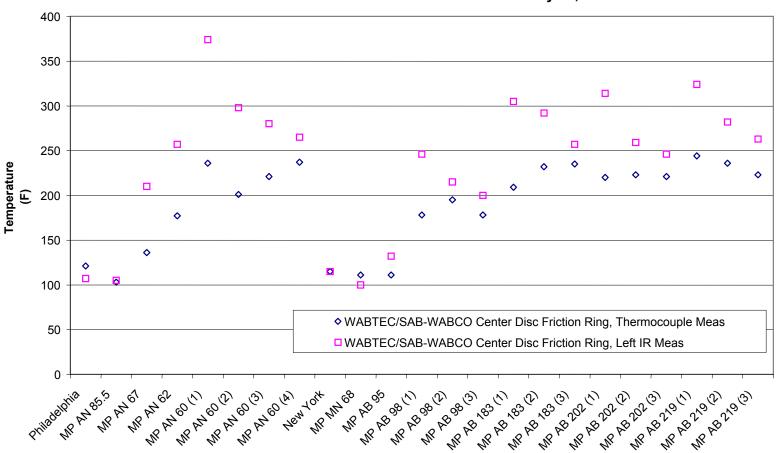
L = Length of Spoke

Thermal Expansion Of Friction Rings

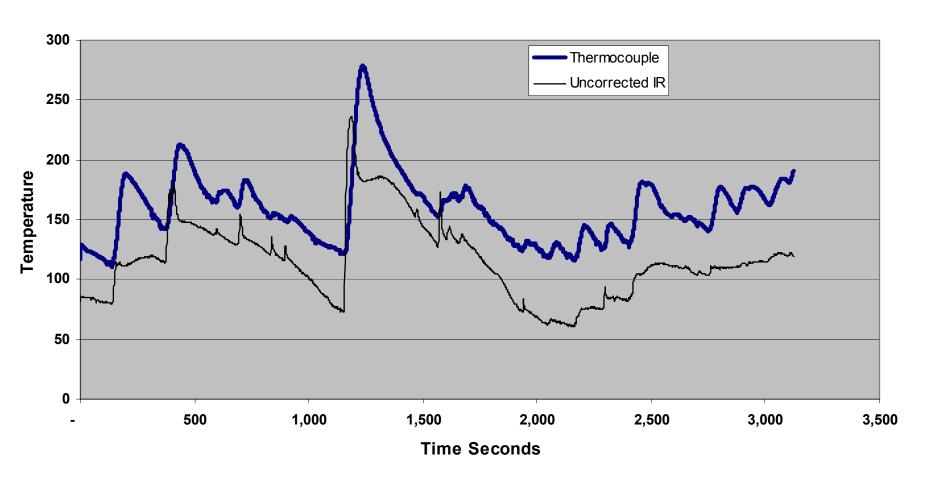
- $C_o = 67$ inches
- L = 7 inches
- A=7*10⁻⁶/degree F
- Spoke Strain/Degree F = 10.7µ Strain/F°
- Spoke Resists Expansion, So The Resulting Strain In Spoke Should Be Less Than This Value

Temperature Measurements

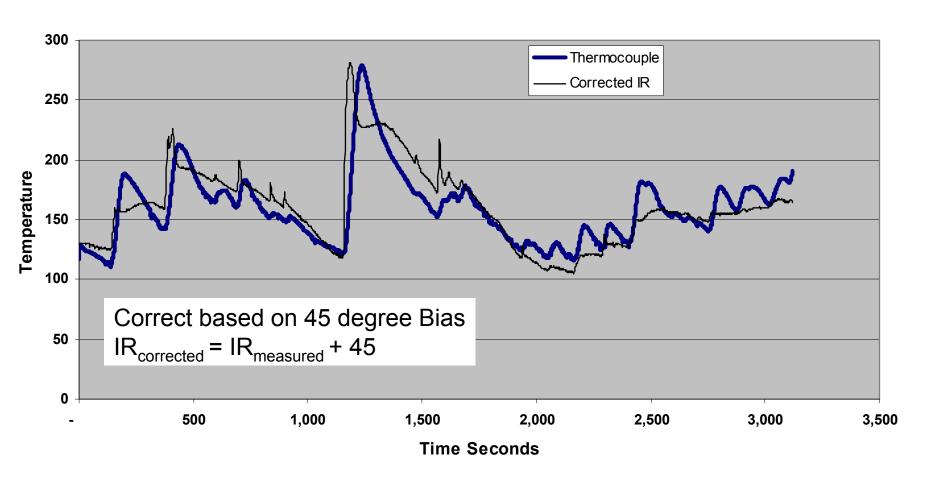
Temperature Measurements

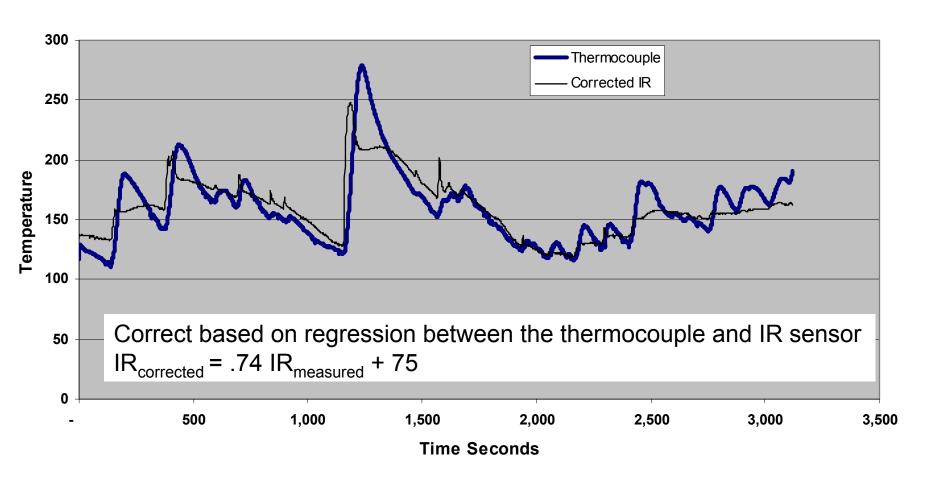

- Two Types Of Temperature Sensors Were Used During Testing:
 - IR Sensors
 - Thermocouples
- The IR Sensors Were Aimed At The Friction Surface At Approximately A 90° Angle

Temperature Sensors

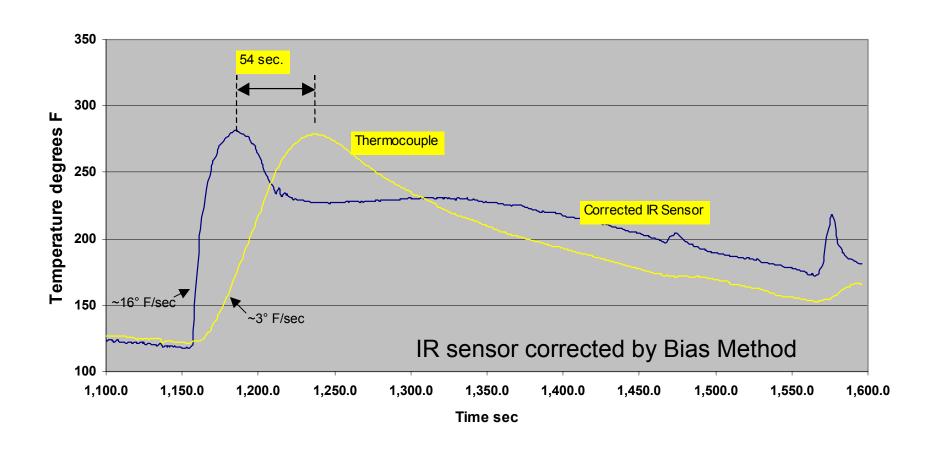

- IR Sensor
 - Aimed At Friction Surface
 - Non-Contact
 - Fast Response
- Thermocouple
 - Attached To Back Of Friction Surface
 - Rotates With Axle
 - Slow Response–Requires Back Of Friction
 Plate To Heat Up

Comparison Of IR And Hand Thermocouple Measurements


Comparison of Hand Thermocouple Measurements with IR Temperature Measurement, Left Side of Center WABTEC/SAB-WABCO Disc-May 16, 2005

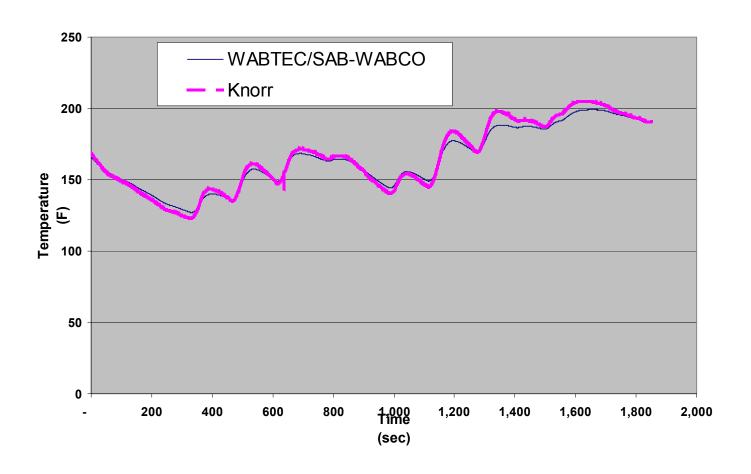

Temperature Measurements Made on May 17, 2005, Between Newark, NJ, and Philadelphia, PA–File 051705_19.ABT

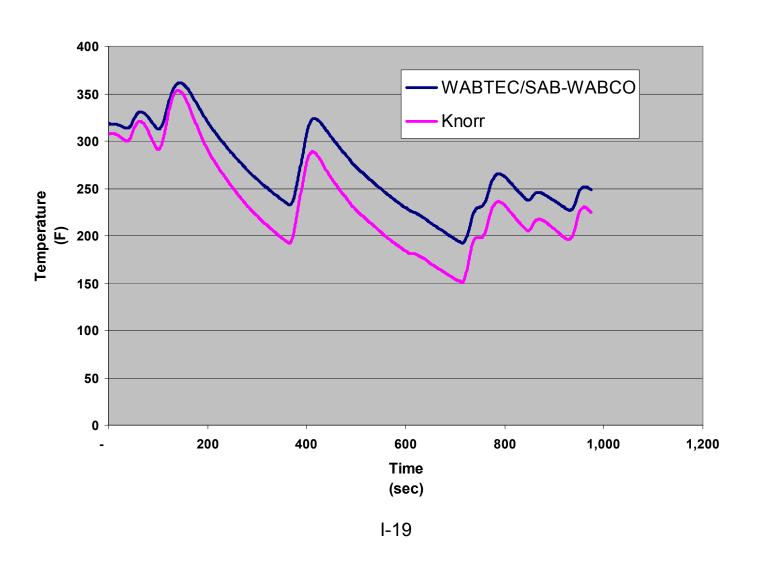
IR and Thermocouple Time History (Bias Compensation)


IR and Thermocouple Time History (Bias Compensation)

Comparison Of Thermocouple And IR Sensors During Braking

- The IR Sensor Responds Quickly To Application Of Brakes
- The Thermocouple Requires Significantly More Time
- Peak Temperature Response In Thermocouples Occurs 53 Seconds After Peak In IR Sensor
- See Next Plot

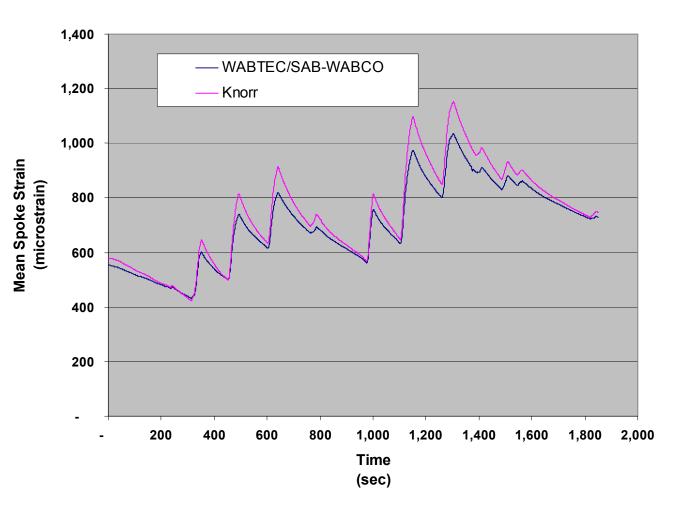

Difference Between IR And Thermocouple Response


Testing On June 16-18

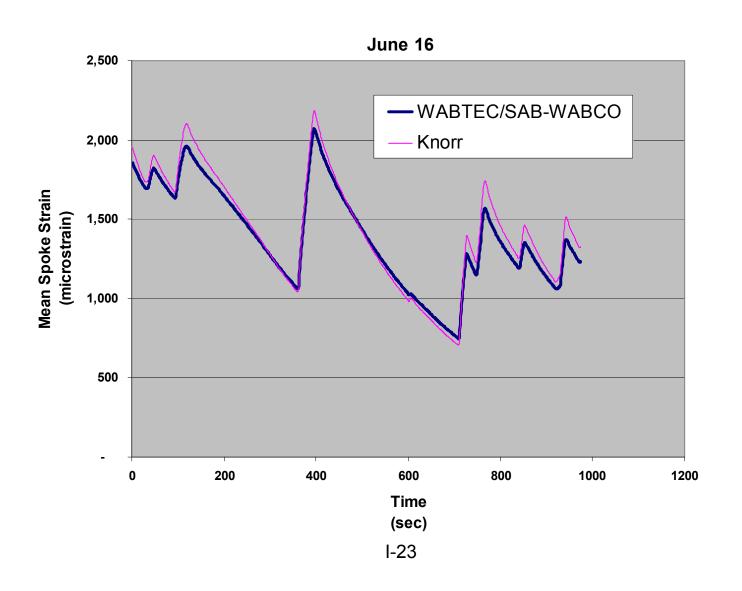
- The Thermocouples Were The Only Temperature Measurements On The Disc
- Temperature Measurements Were Made On Both The WABTEC/SAB-WABCO And Knorr Discs
- The Next Slide Shows The Recorded Temperatures On The Discs

Disc Temperature Measurements-Example 1

Disc Temperature Measurements–June 16, 2005– File 061605_18.AB3



Observation


- The Discs Show Similar Temperature Profiles During Testing
- The Knorr Disc Heats Up And Cools Down Just Slightly Faster Than The WABTEC/SAB-WABCO Disc, Both Around 3 °F/Second
- Both Discs Reached A Temperature Of 360 °F, The Highest Seen During Testing

Spoke Strains and Temperature

Spoke Mean Strain

Mean Spoke Strain Measurements—June 16, 2005— File 061605_18.AB3

Observations

- Both Discs Show Similar Mean Strain Profiles
- The Knorr Disc Shows 3% To 5% More Mean Strain
- Maximum Mean Strains Of 2200
 Microstrain Were Observed For The Knorr Disc
- Maximum Mean Strains Of 2100
 Microstrain Were Observed For The WABTEC/SAB-WABCO Disc

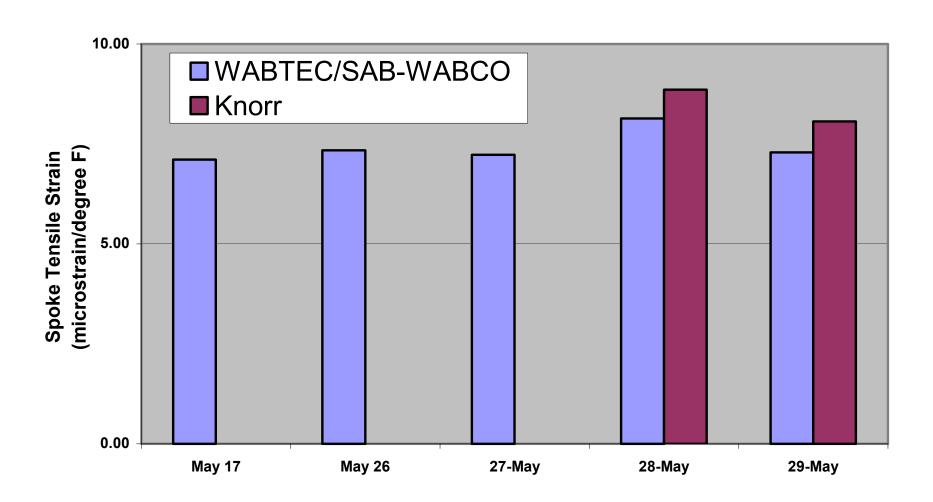
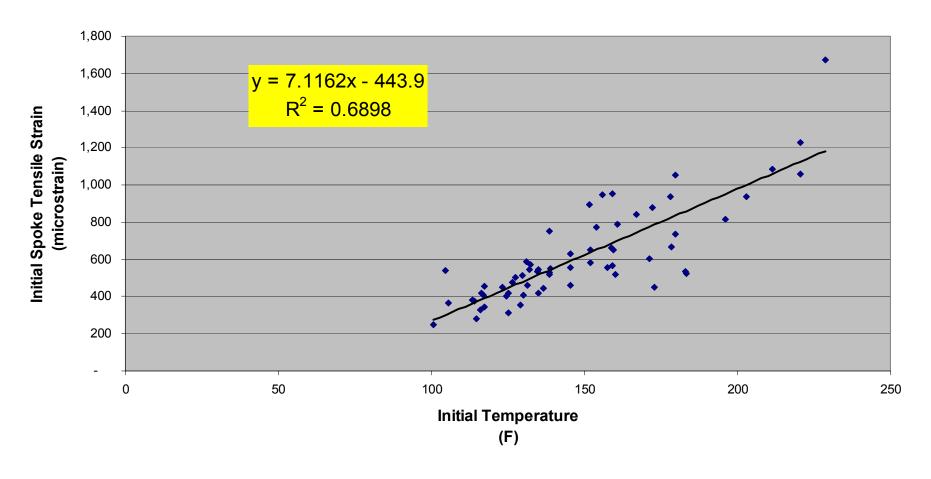
Spoke Mean Strain Versus Temperature Of Disc Friction Plate

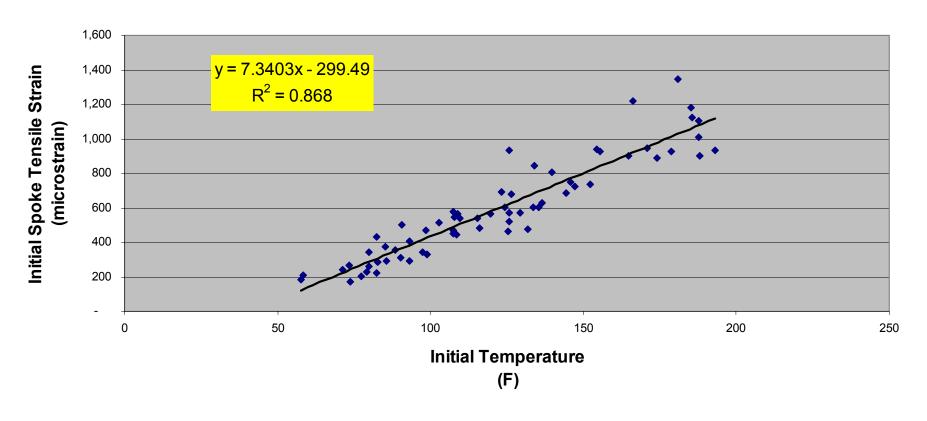
- Temperature Is Measured With Thermocouple Mounted On Back Side Of Disc Near The Outer Edge Of The Friction Ring
- Strains Are The Average Of Gage Pairs

Strain Estimates Based on Temperature

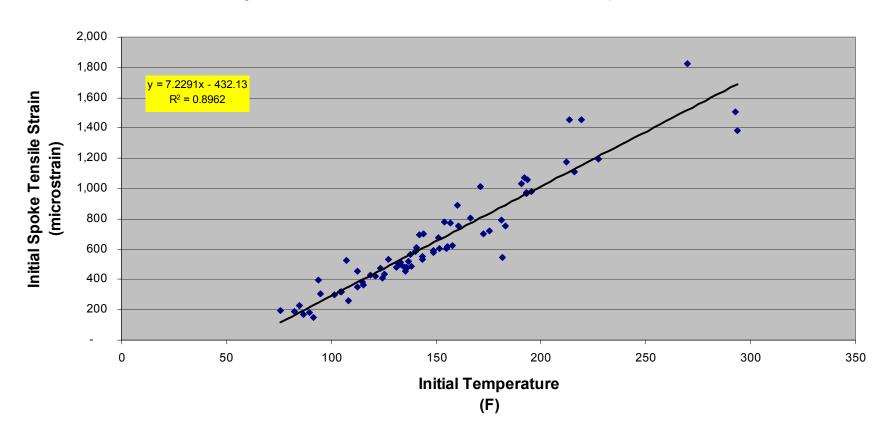
- Analysis conducted to estimate the amount of spoke tensile strain per friction plate temperature increase
- This approach used temperature and strain measurements at the beginning of each braking event over a full testing day
- While the new values are lower than the initial estimates, the relationship of the Knorr and WABTEC/SAB-WABCO discs remained the same
- The Knorr disc shows about 10% more strain than the WABTEC/SAB-WABCO disc

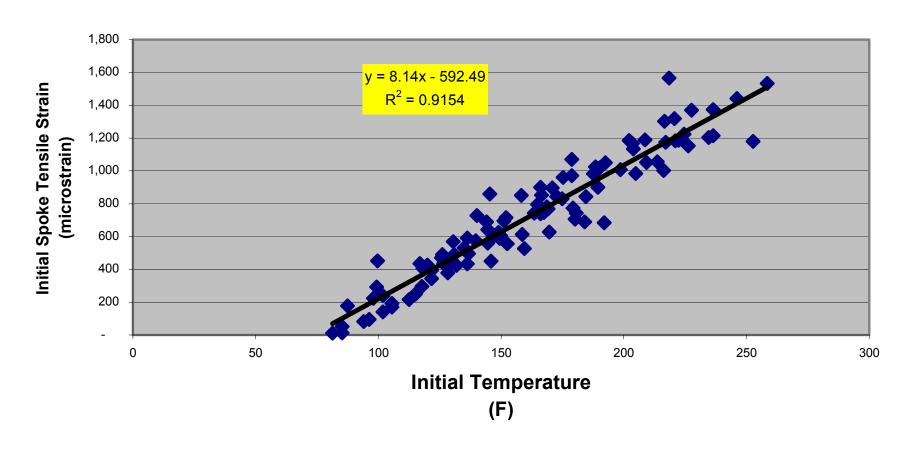
Spoke Strain/Disc Temperature

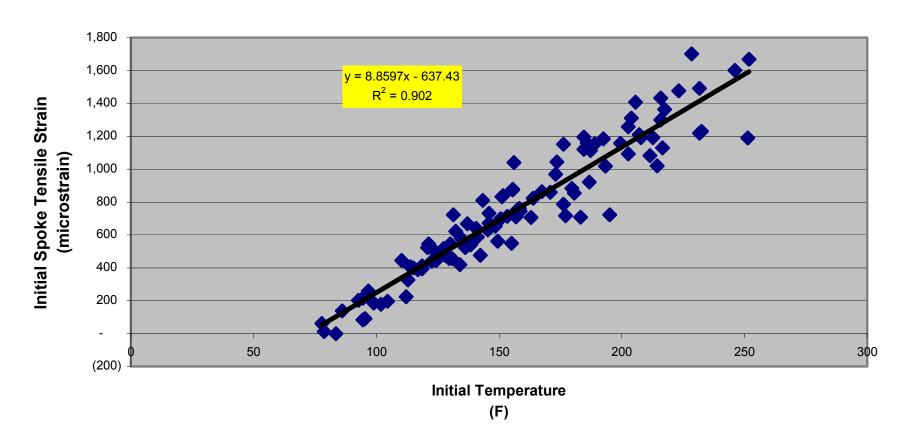



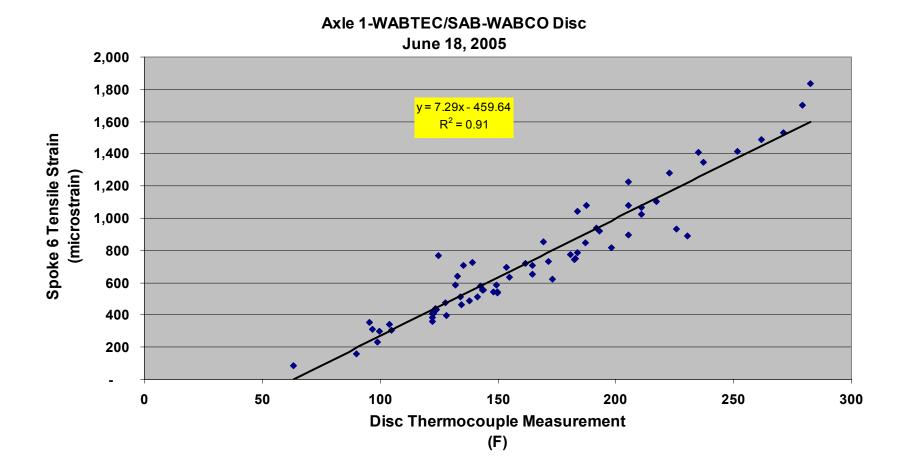

Table I.2. Summary of Strain Estimates Per Degree in Temperature

	Spoke 6 Tensile Strain Microstrain/°F		
	WABTEC/SAB -WABCO	Knorr	
May 17	7.11	N/A	
May 26	7.34	N/A	
May 27	7.23	N/A	
June 17	8.14	8.86	
June 18	7.29	8.06	

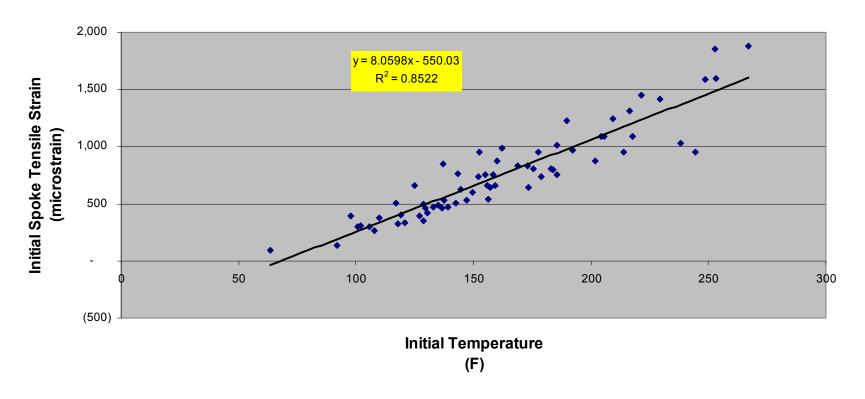

May 17 Center WABTEC/SAB-WABCO Disc Spoke 6


May 26 Center WABTEC/SAB-WABCO Disc Spoke 6


May 27 Center WABTEC/SAB-WABCO Disc Spoke 6

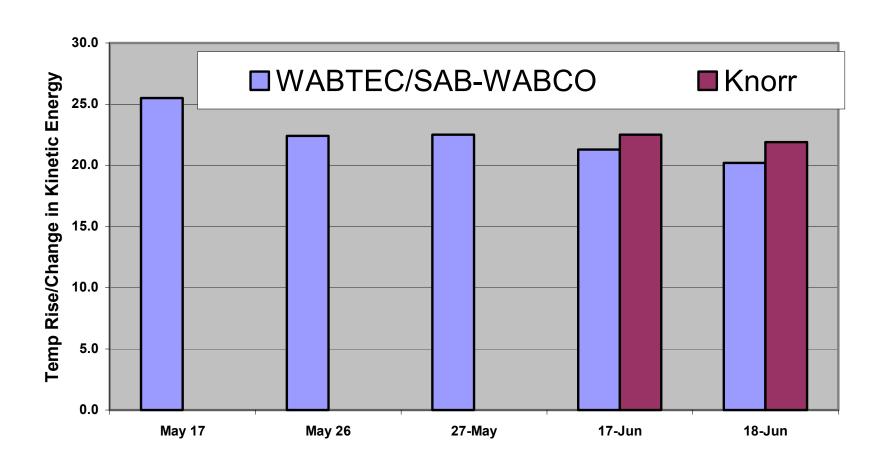


June 17 Center WABTEC/SAB-WABCO Disc Spoke 6

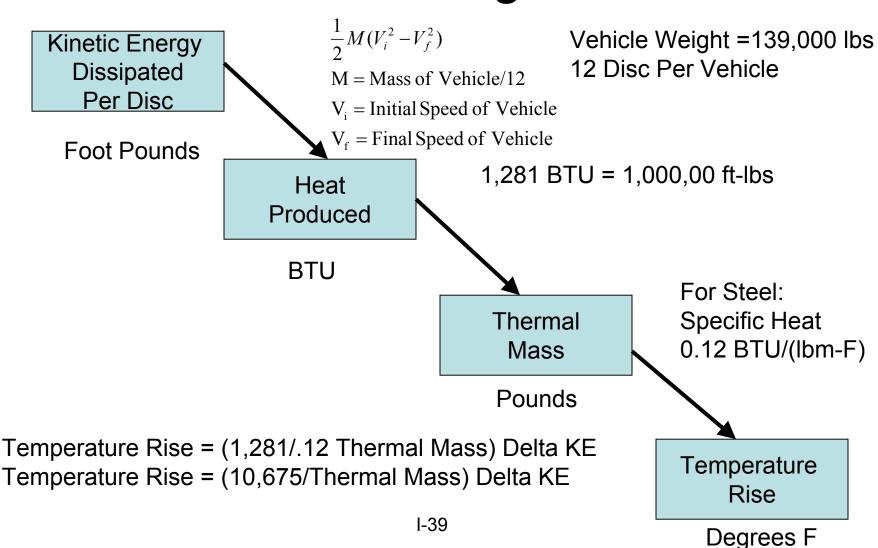


June 17 Center Knorr Disc Spoke 6

Axle 2-Center Knorr Disc June 18, 2005



Heating and Cooling of Discs


Heating Of Discs

- Based On A Limited Number Of Braking Sequences, It Was Observed That The Knorr Disc Heated Up More Than The WABTEC/SAB-WABCO Disc During Braking
- A Methodology To Quantify This
 Difference Was Developed To Include All
 Braking Sequence Days For Which
 Temperature Data Was Observed

Temperature Rise

Disc Temperature Rise Due To Braking

Temperature Build-Up During Braking

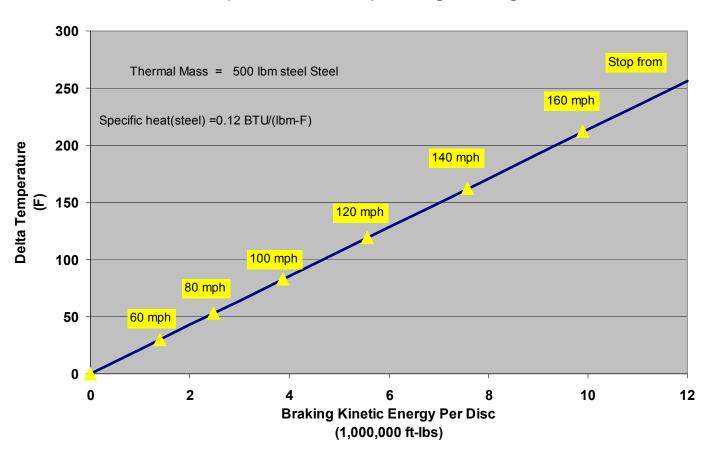
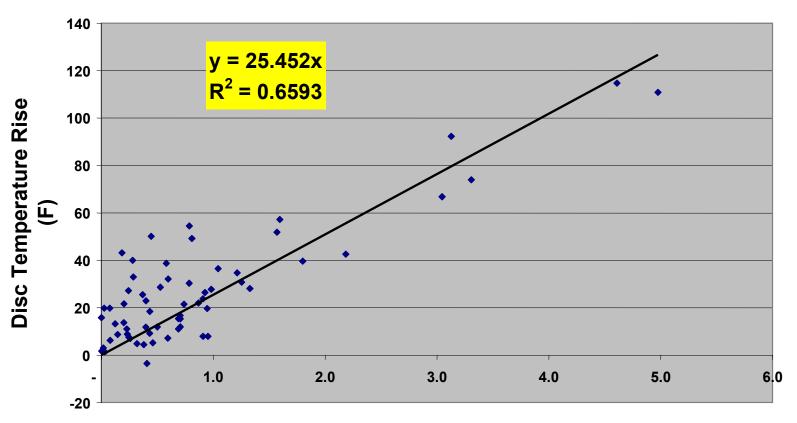
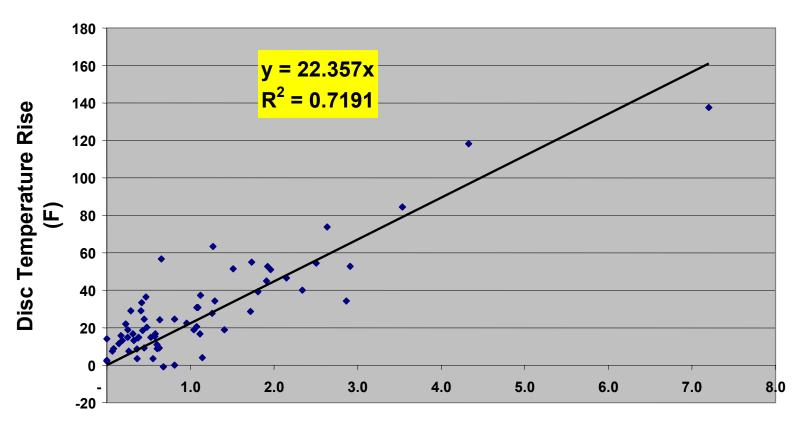
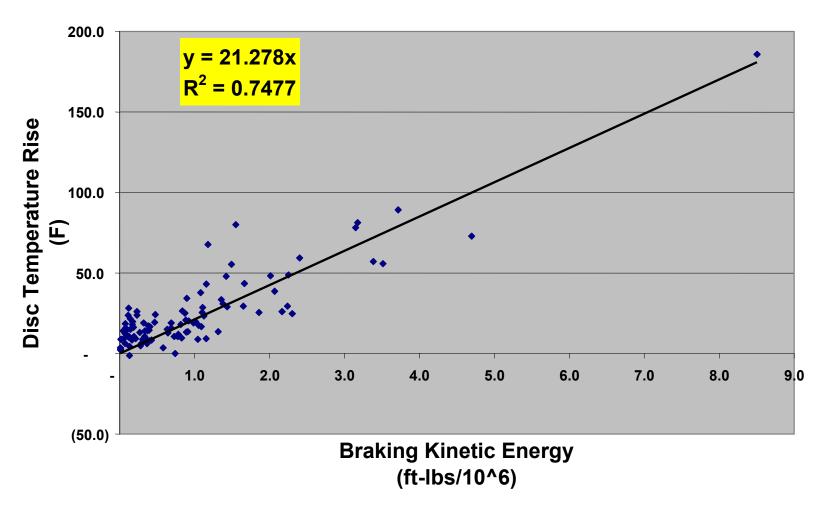



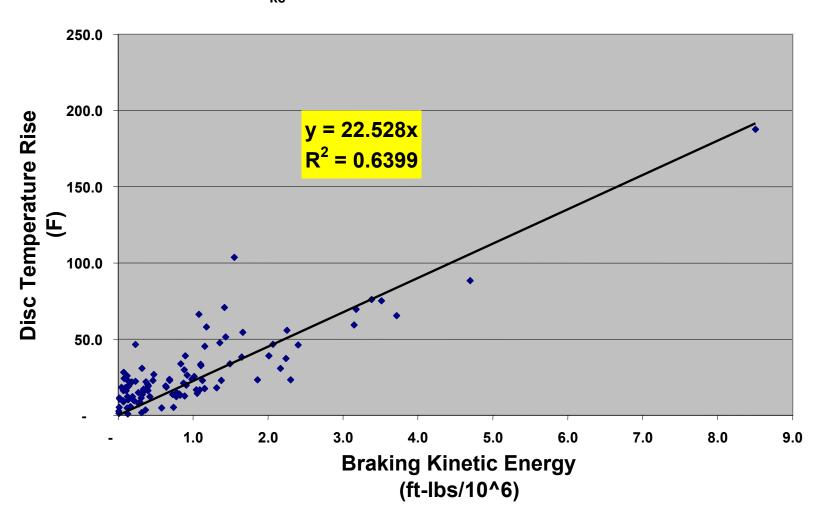
Table I.3. Summary, Disc Temperature Rise for Change in Kinetic Energy Table


	Disc Temperature Rise for Change in Kinetic Energy TC _{ke}		
	WABTEC/SAB -WABCO	Knorr	
May 17	25.5	N/A	
May 26	22.4	N/A	
May 27	22.5	N/A	
June 17	21.3	22.5	
June 18	20.2	21.9	

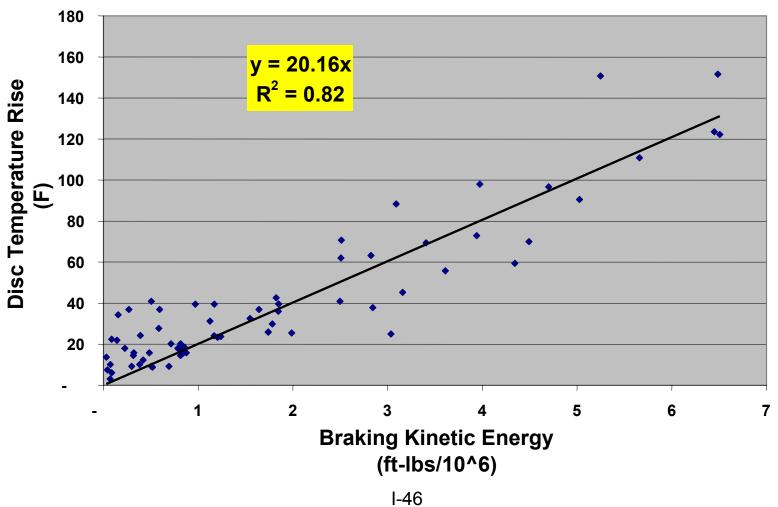
CT_{ke}-May 17-Center WABTEC/SAB-WABCO Disc

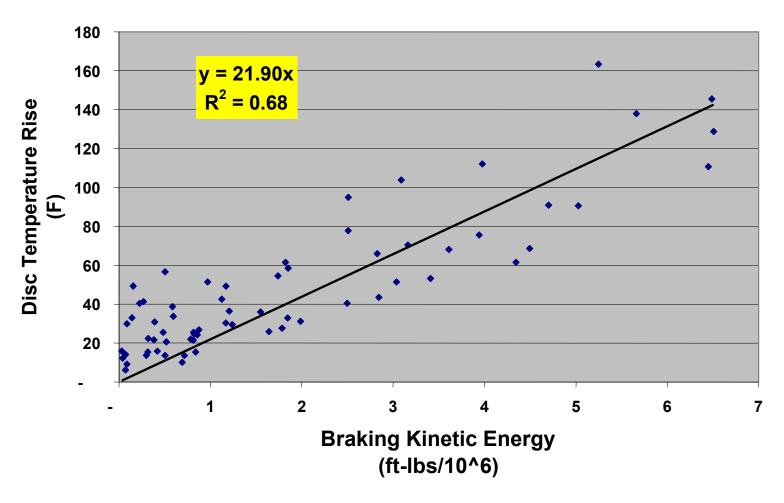

Braking Kinetic Energy (ft-lbs/10^6)

CT_{ke}-May 26-Center WABTEC/SAB-WABCO Disc

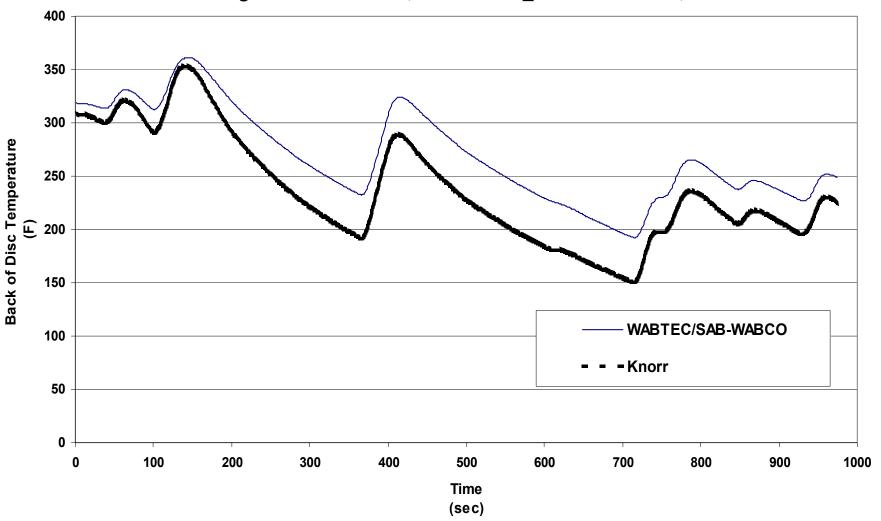


Braking Kinetic Energy (ft-lbs/10^6)


CT_{ke}-June 17-Center WABTEC/SAB-WABCO Disc


CT_{ke}-June17-Center Knorr Disc

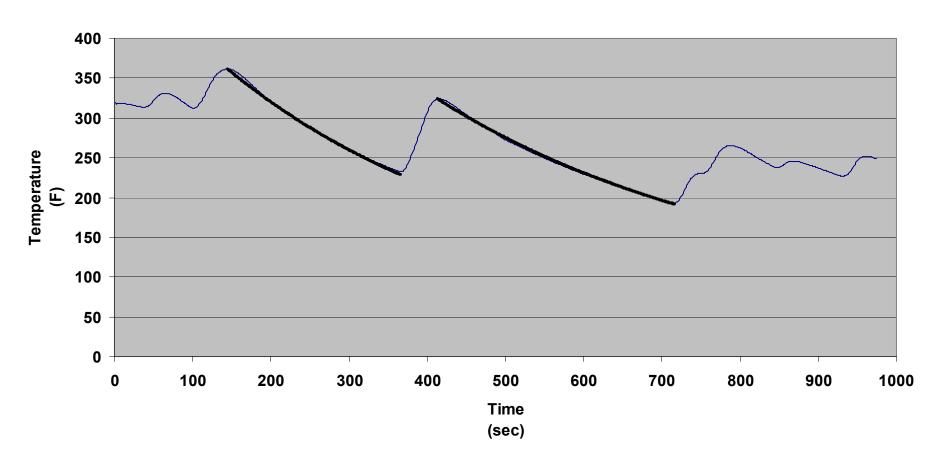
CT_{ke}-June 18-Center WABTEC/SAB-WABCO Disc


CT_{ke}-June 18-Center Knorr Disc

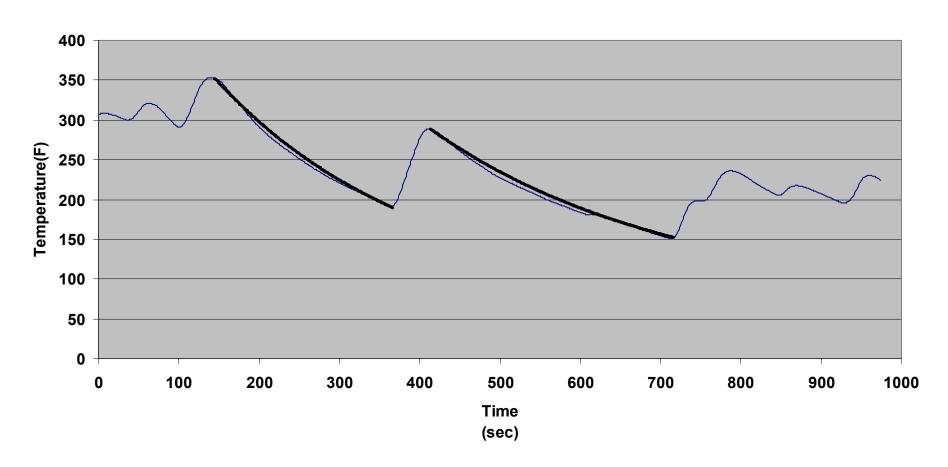
Cooling Of Discs

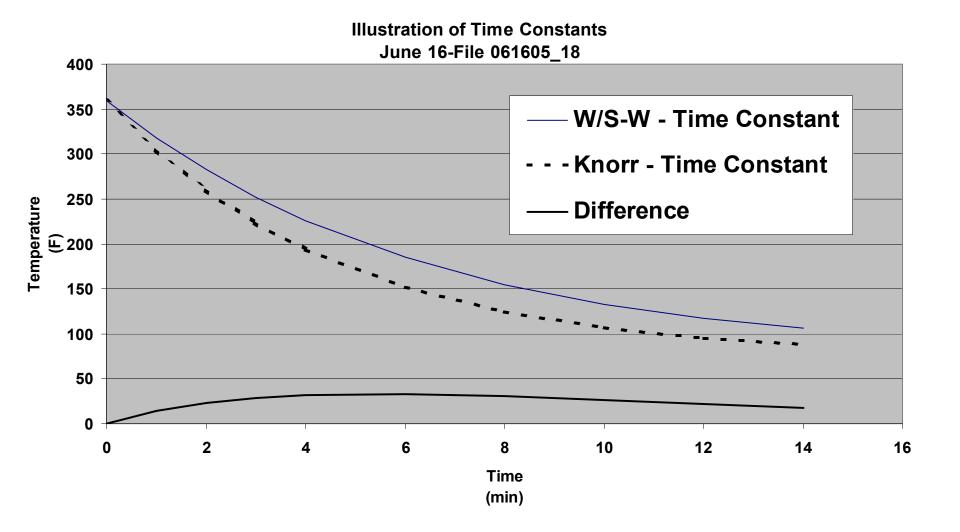
- Analysis Conducted To Address The Time Constants For The WABTEC/SAB-WABCO And Knorr Discs Under The Same Operational Conditions
- The Knorr Disc Cools Down Faster Than The WABTEC/SAB-WABCO Disc, While The Knorr Disc Heats Up Faster During Braking Cycles

Temperature Profile of WABTEC/SAB-WABCO and Knorr Brake Discs During Shakedown Run, File 061605_18.AB3-June 16, 2005

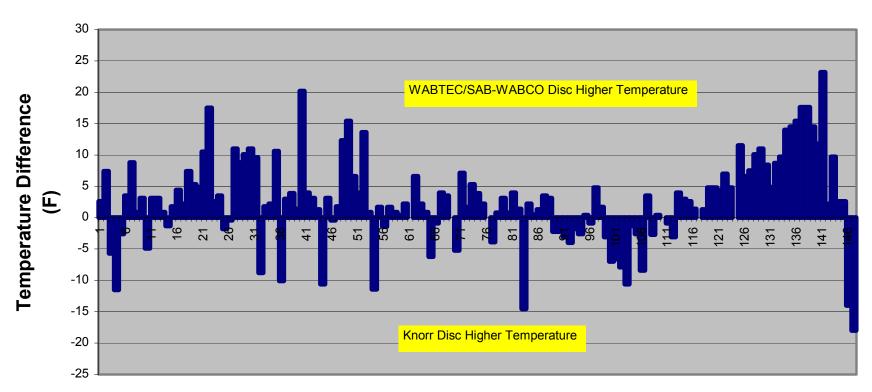

Table I.4. Thermal Time Constants

Observation		Initial Temper	rature	Time Constant		
Event	Period	WABTEC/ SAB-WABCO	Knorr	WABTEC/SAB- WABCO	Knorr	Ratio
1	221	361	352	355	251	71%
2	303	324	289	400	299	75%


Average 377 275 73%


Time Constant (minutes) 6.3 4.6

Back of Disc Temperature, WABTEC/SAB-WABCO Disc June 16-File 061605_18

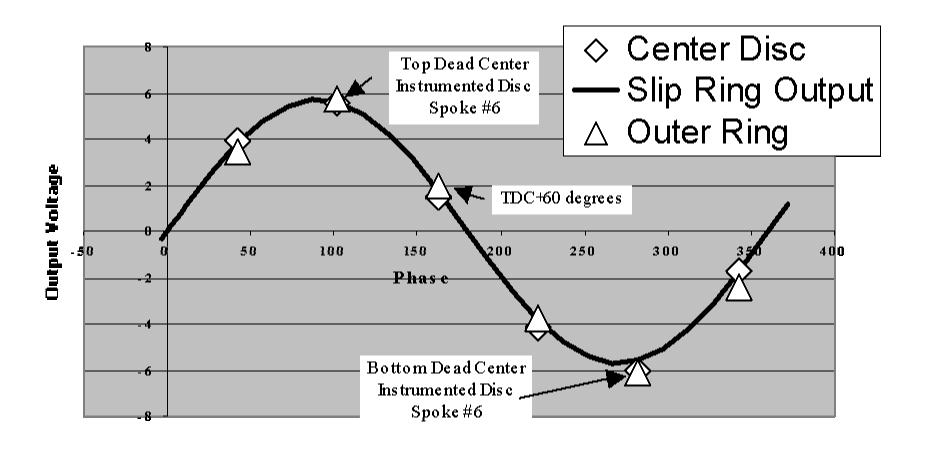


Back of Disc Temperature, Knorr Disc June 16-File 061605_18

Temperature Differences After Braking Events - June 17, 2005

Braking Sequence

Appendix J. Laboratory Testing


<u>Part</u>	<u>Page</u>
Part A: Resolver Synchronization and Spreader Bar Test	J-2-J-6
Part B: Residual Strains	J-7-J-38
Part C: Vibration Analysis	J-39–J-71

Part A: Resolver Synchronization and Spreader Bar Test

Resolver Synchronization

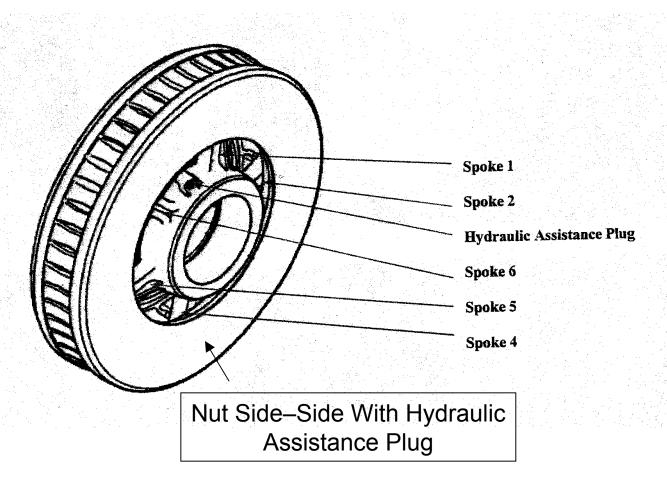
- Rotate axle in defined direction
- Record slip ring resolver sine wave output
- Record spoke position
- Use resolver sine wave to determine angular position of instrumented spoke when BOP strain is near zero and when BOP strain has large amplitude to identify plane

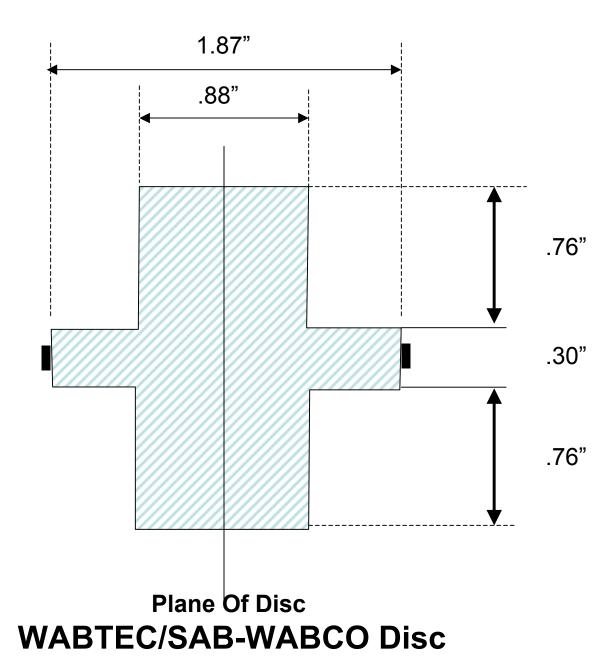
Instrumented Spoke Phase Based on Wheel Position

Spreader Bar Test

- Place hydraulic ram and load cell between the center brake disc and the outer brake disc at the outer circumference of the discs
- Apply a spreading force normal to the discs in turn at a radial position in line with each spoke of the center disc, and in line with each spoke of the outer disc
- Record strain from each spoke for each spreading force application

Force Applied at the Outer Perimeter of the Disc Friction Ring: 5.75 inches out from the inner radius of the friction ring 8 3/8 inches out from the hub Force Applied Between the Center Disc and the Outer Disc in each case


Center Disc		Strains Measured on Center Disc Spoke			Strains Measured on Outer Disc Spoke				
Spoke at which Force Applied	Force Applied [lb]	Strain F1	Strain F2	Strain R1	Strain R2	Strain F1	Strain F2	Strain R1	Strain R2
6	-400	-10.4	-7.2	-73.5	56.3	-7.7	-12.3	53.2	-53.4
6	-504	-10.5	-7.1	-89.3	72.4	-7.9	-12.6	67.7	-65.5
1	-505	-9	-11.9	-53.9	30.8	-6.9	-12.8	38.5	-45.2
2	-510	-13.5	-11.6	-12.9	-13.4	-8.9	-14.2	-12.4	-10.1
3	-502	-10.6	-12	23	-48	-5.8	-13.5	-40.3	16.2
4	-503	-13.2	-8	-1.2	-22.4	-6.9	-10.3	-27.6	2.2
5	-504	-11.7	-4.9	-53.8	32.5	-9.4	-9.6	23.8	-33.6
6	-508	-8.6	-5.9	-89.1 J-6	74.1	-5.1	-9	67.1	-64.1


Part B: Residual Strains

Residual Strain Tests

- Performed By Mike Tomas (AMTRAK)
- Three Discs Examined
 - WABTEC/SAB-WABCO Disc After Press Off Operation And After Spokes Cut
 - 2. Knorr Disc After Press On Operation
 - WABTEC/SAB-WABCO Disc With Two Cracked Spokes After Spokes Cut
- Strain Gages On Spokes In The R1 And R2 Positions

Spoke Naming Convention

Strain Gages

J-10

Table J.1. Spoke Cross Section Values

	WABTEC/ SAB-WABCO	Knorr
Area	1.9 in ²	3.6 in ²
Moment Of Inertia (Bending In-Plane)	0.44 in ⁴	0.85 in ⁴
Moment Of Inertia (Bending Out-Of-Plane)	0.25 in ⁴	1.69 in ⁴

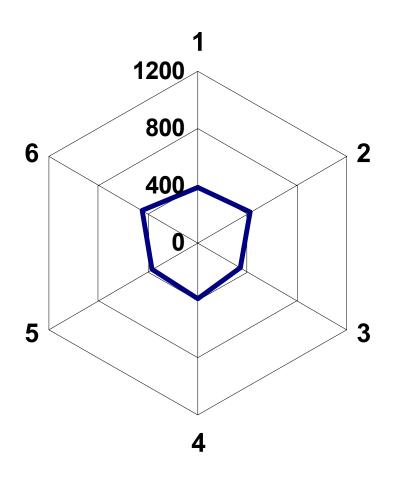
Disc 1 WABTEC/SAB-WABCO

- Interference Fit Parameters
 - Allowable .009 to .012"
 - Press Force 27 to 84 Tons

- Disc 1
 - Interference Fit .0097"
 - Press Force 54 Tons

Key Values

- $E = 30.5 \cdot 10^6 \, \text{psi}$
- Cross Sectional Area Of Spoke At Strain Gage Location 1.9 in²
- Negative Strains Indicate A Reduction In Compressive Pre-Strain


Table J.2. WABTEC/SAB-WABCO Disc 1 Pre-Strain, Disc Removal

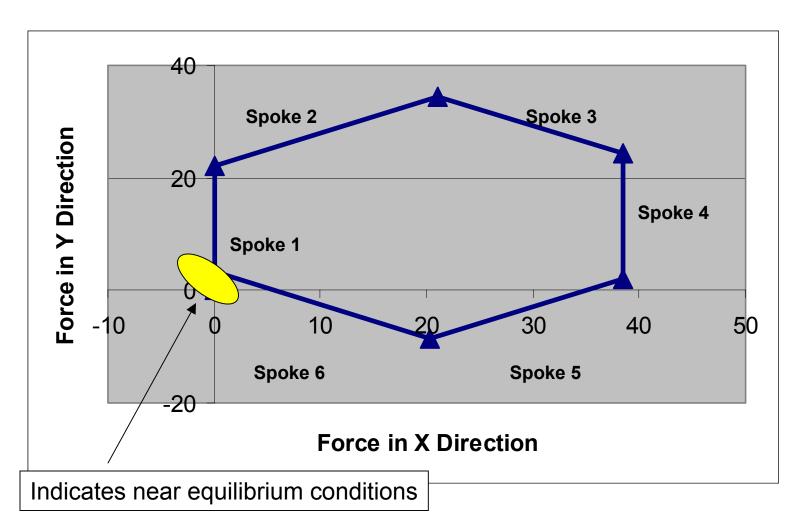
WABTEC/SAB-WABCO Disc-Good condition with approximately 1,500 to 2,000 miles service.

Disc removed from axle 4 on car 3534, May 28, 2005. Press off operation.

	Nut Side	Other Side	Resultant	Resultant	Estimate Force in
Spoke	ke Resultant Strain		Average Strain	Bending Strain	Spoke (kips)
1	-330	-436	-383	53	22.2
2	-356	-480	-418	62	24.2
3	-400	-295	-348	-52.5	20.1
4	-392	-374	-383	-9	22.2
5	-364	-360	-362	-2	21.0
6	-348	-541	-445	96.5	25.8
		Average	-390	25	23

WABTEC/SAB-WABCO Disc 1 Press Off Operation

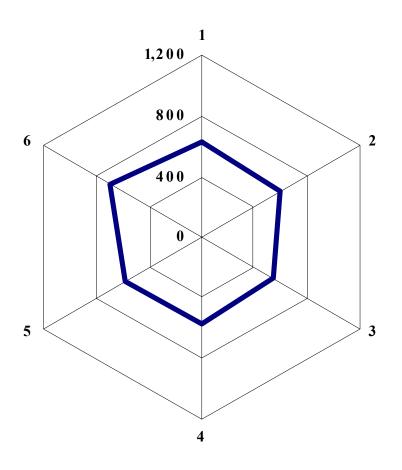
Test Of Observed Pre-Strain Reduction


Assume:

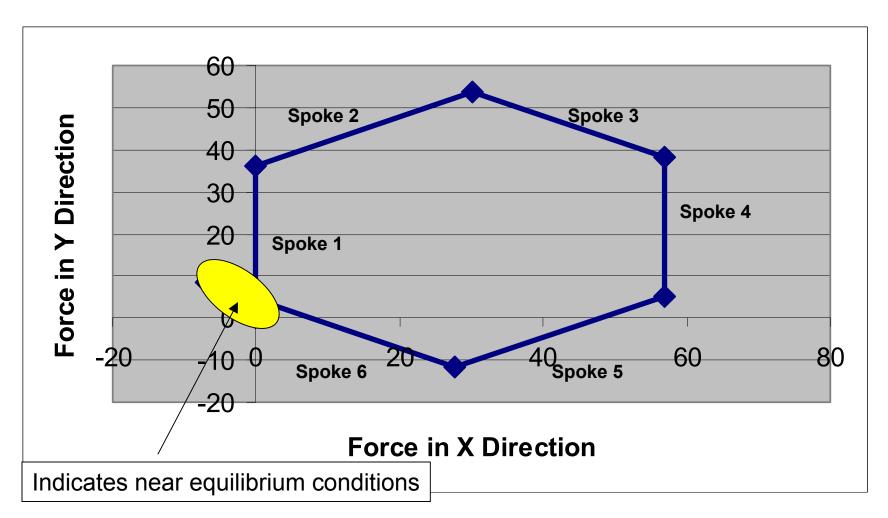
- Pre-Strain Produces Only Compressive Force
 Along The Axis Of The Spoke
- This Force Can Be Estimated By The Mean Observed Strain (Average Of The Right And Left Strain Gages) Times The Cross Section Area Of Section
- The Six Forces Acting On The Friction Disc
 Should Be In Equilibrium

Spoke Forces On Friction Rings

Summation Of Spoke Forces

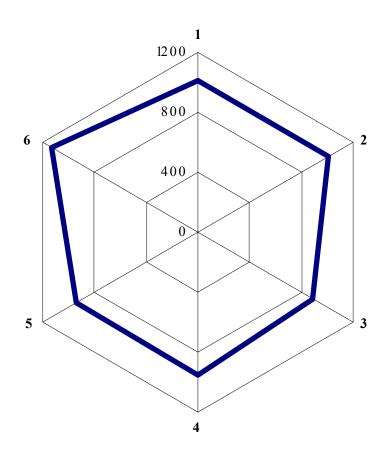

Table J.3. WABTEC/SAB-WABCO Disc 1 Pre-Strain, Spoke Cutting

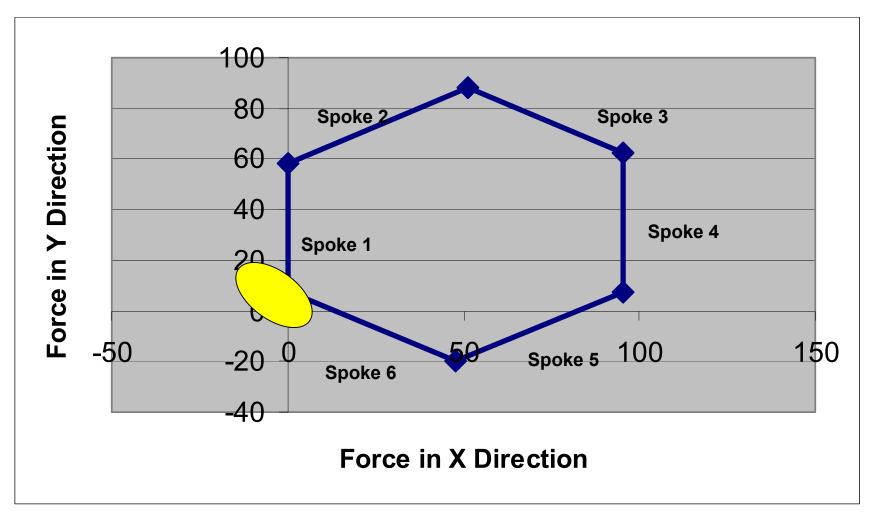
Spokes cut to relieve any pre-stress. WABTEC/SAB-WABCO Disc-Good condition with approximately 1,500 to 2,000 miles service.


Disc removed from axle 4 on car 3534, May 28, 2005.

	Nut Side	Other Side		Resultant	Estimate Force in
Spoke	ce Resultant Strain		Resultant Average Strain	Bending Strain	Spoke (lbs)
1	-602	-650	-626	24	36.3
2	-567	-630	-599	31.5	34.7
3	-613	-455	-534	-79	30.9
4	-694	-444	-569	-125	33.0
5	-697	-467	-582	-115	33.7
6	-656	-725	-691	34.5	40.0
	•	Average	-600	-38	35

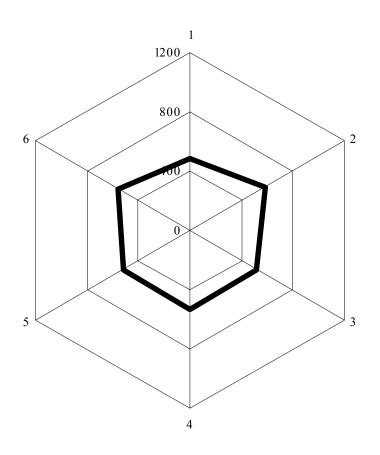
WABTEC/SAB-WABCO Disc 1 Spokes Cut

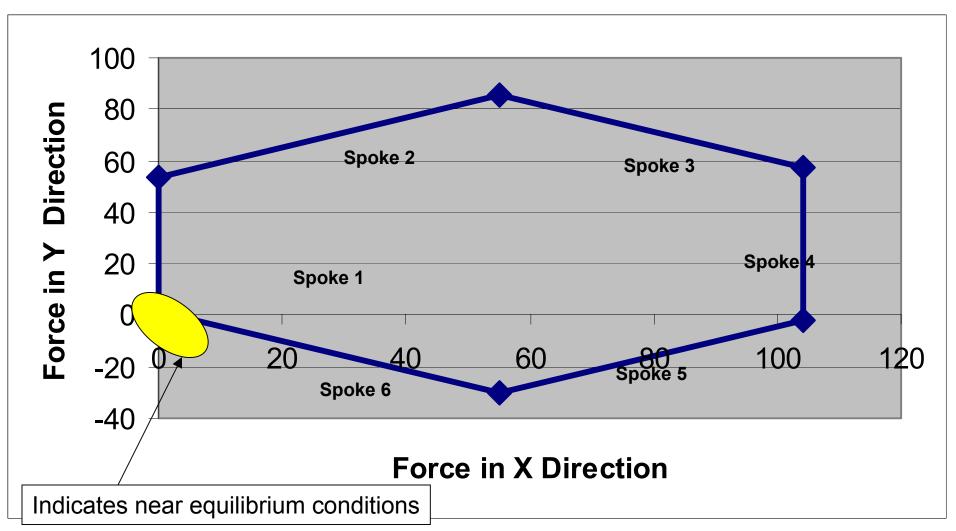

Spoke Force Summation Disc 1


Table J.4. WABTEC/SAB-WABCO Disc 1 Pre-Strain, Disc Removal and Disc Cutting

Combined Residual Strain (Both Compressive)								
	Nut Side	Other Side	Resultant	Resultant Bending	Estimate Force in Spoke			
Spoke	Resultant Strain		Average Strain	Strain	(lbs)			
1	-932	-1,086	-1,009	77	58			
2	-923	-1,110	-1,017	94	59			
3	-1,013	-750	-882	-132	51			
4	-1,086	-818	-952	-134	55			
5	-1,061	-827	-944	-117	55			
6	-1,004	-1,266	-1,135	131	66			
Average			-990	-14	57			

Disc 1 Combined Relieved Strain


Disc 1 Combined


Table J.5. Knorr Disc 2 Pre-Strain, Disc Installation

Knorr Press On								
	Nut Side	Other Side		Resultant	Estimate Force in			
Spoke	Resultant Strain		Resultant Average Strain	Bending Strain	Spoke (lbs)			
1	-491	-484	-488	-3.5	54			
2	-637	-524	-581	-56.5	64			
3	-503	-530	-517	13.5	57			
4	-460	-612	-536	76	59			
5	-513	-524	-519	5.5	57			
6	-531	-585	-558	27	61			
		Average	-533	10	59			

Knorr Disc Disc 2

Knorr Disc Disc 2

Disc 2 Knorr

Photo Courtesy of J. Gordon, Volpe National Transportation Center

Spoke Strain Gage On Knorr Disc

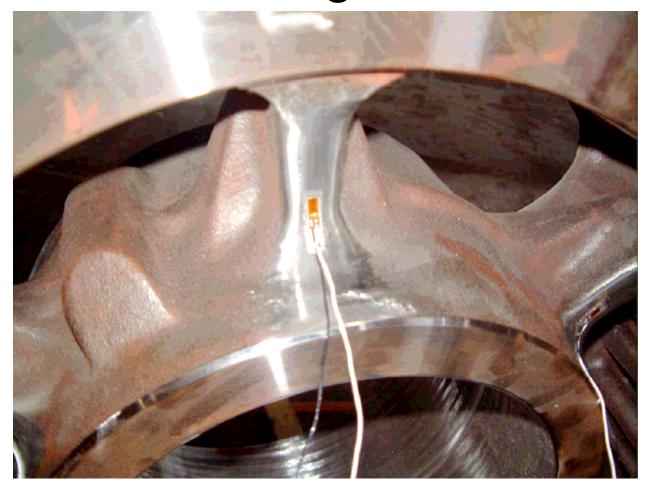


Photo Courtesy of J. Gordon, Volpe National Transportation Center

Spoke Strain Gage On Knorr Disc

Photo Courtesy of J. Gordon, Volpe National Transportation Center

Material Properties Knorr Disc

Reported by Volpe

Yield Strength 850-900 MPa

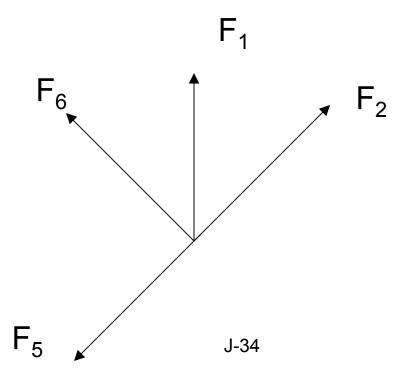
Ultimate Strength 1000-1050 MPa

Yield Strength 123-130 ksi

Ultimate Strength 145-152 ksi

Disc 3 WABTEC/SAB-WABCO Disc With Two Cracked Spokes

- Cracked Spokes—No Pre-Stress
- Other Spokes:
 - Strain Levels Less Than In Disc 1 After Press
 Off Operation
 - Large Values Of Bending Strain


Table J.6. WABTEC/SAB-WABCO Disc 3 Pre-Strain, Spoke Cutting with Two Cracked Spokes

WABTEC/SAB-WABCO Disc with Two Cracked Spokes								
	Nut Side	Other Side	Day Have	Resultant	Estimate			
Spoke	Resultant Strain		Resultant Average Strain	Bending Strain	Force in Spoke (lbs)			
1	N/A	-681	N/A	N/A	N/A			
2	-1,219	-386	-803	-416.5	47			
3	-2	31	15	-16.5	-1			
4	2	N/A	N/A	N/A	N/A			
5	-580	-779	-680	99.5	39			
6	N/A	-474	N/A	N/A	N/A			
		Average	-741	N/A	N/A			

Note: Average Based on Spokes 2 and 5

Summation Of Spoke Forces

 The Equilibrium Conditions Cannot Be Met With The Two Broken Spokes Under The Assumption Stated Above

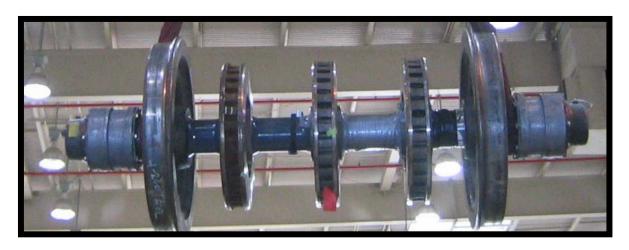
Comments

- Spokes Compressive Force Must Be Augmented With Shear Forces In The Spoke
- The Available Test Data Does Not Allow This Force To Be Calculated
- The Large Bending Strain In Spoke 2 May Indicate Shear In Spoke 2

Cracked Spoke

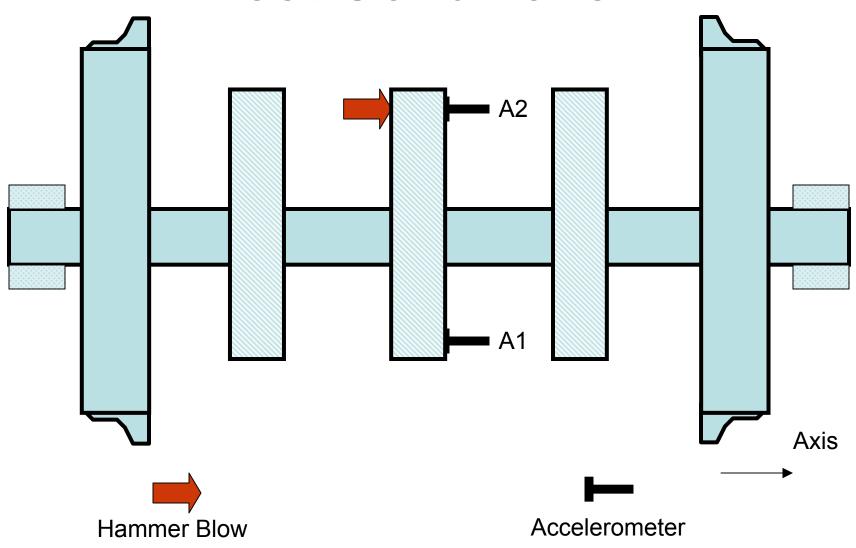
Photo Courtesy of M. Tomas, Amtrak

Cracked Spoke


Photo Courtesy of M. Tomas, Amtrak

Observations

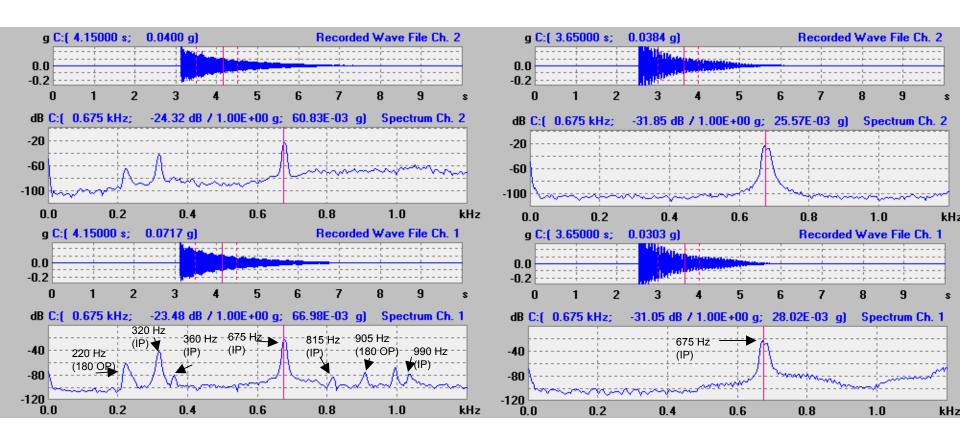
- These observations based on limited sample:
 - One WABTEC/SAB-WABCO disc (press off and cutting of spokes)
 - One WABTEC/SAB-WABCO disc with two cracked spokes (cutting of spokes)
 - One Knorr disc (press on)
 - Extrapolation to total population will require more samples
- WABTEC/SAB-WABCO disc:
 - Press off operation relieved strain 360 to 440 microstrain
 - Cutting the spokes relieved strain 530 to 690 microstrain
 - Retired disc with two cracked spokes, showed no pre-strain in the two cracked discs
 - Retired disc with two cracked spokes, showed retained strain level of 680-800 microstrain on two spokes (the other two spokes did not have gage readings on both sides of spoke, but one-sided strain of 475 and 680 microstrain)
- Knorr disc:
 - Press on operation produced strain level of 490-580 microstrain


Part C: Vibration Analysis

Acela Wheelset

- Static Vibration Tests Conducted On Two Wheelsets Using Acceleration Measurements:
 - One With WABTEC/SAB-WABCO Discs, One With Knorr Discs
 - Each Wheelset Removed From Truck, Resting On Shop Floor

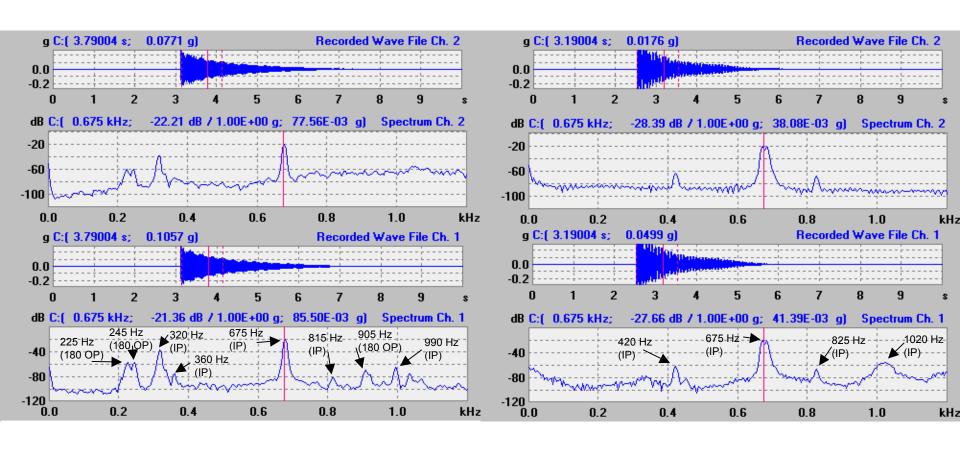
Test Conditions-1

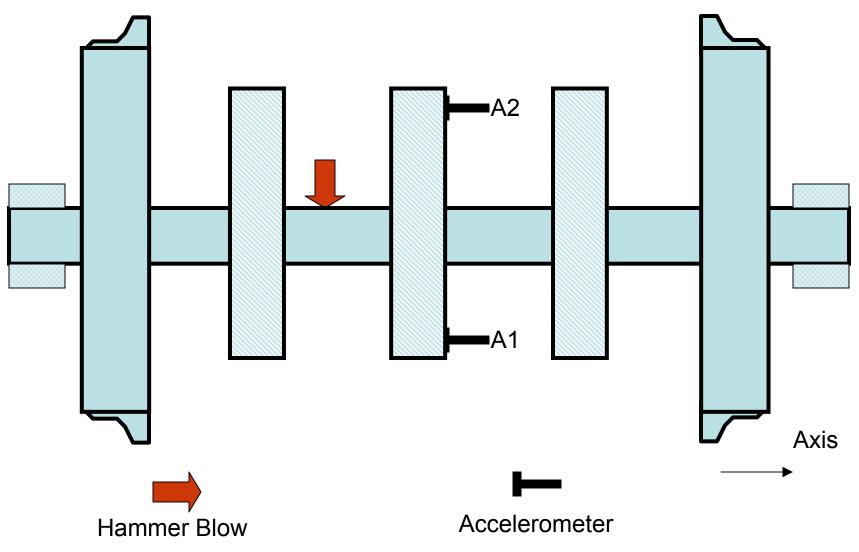

Test 1—Analysis Conditions

- 45 Oz Dead Blow Hammer Used For Force Input
- FFT Over 1-Second Window,
 Approximately 1/2 Second After Impact
- Channel 1–Accelerometer A1
 Channel 2–Accelerometer A2

Vibration Analysis—Test Condition 1

WABTEC/SAB-WABCO Disc


Knorr Disc

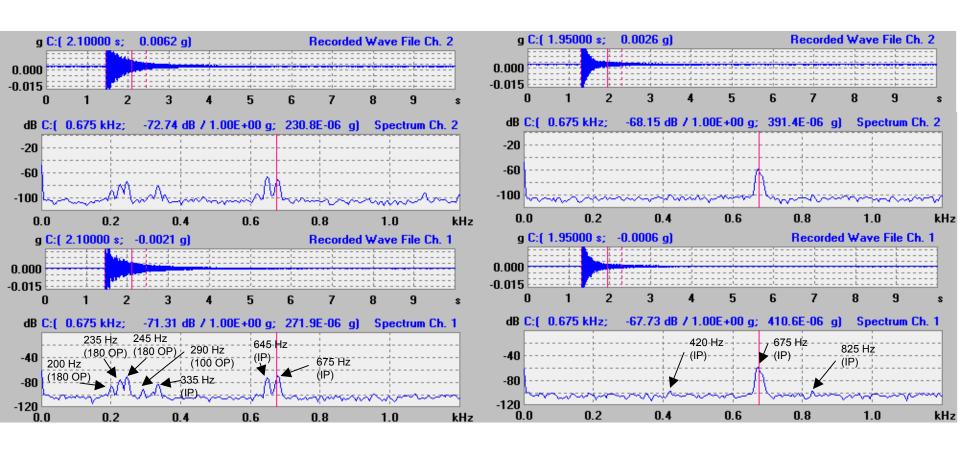

Vibration Analysis—Test Condition 1

WABTEC/SAB-WABCO Disc

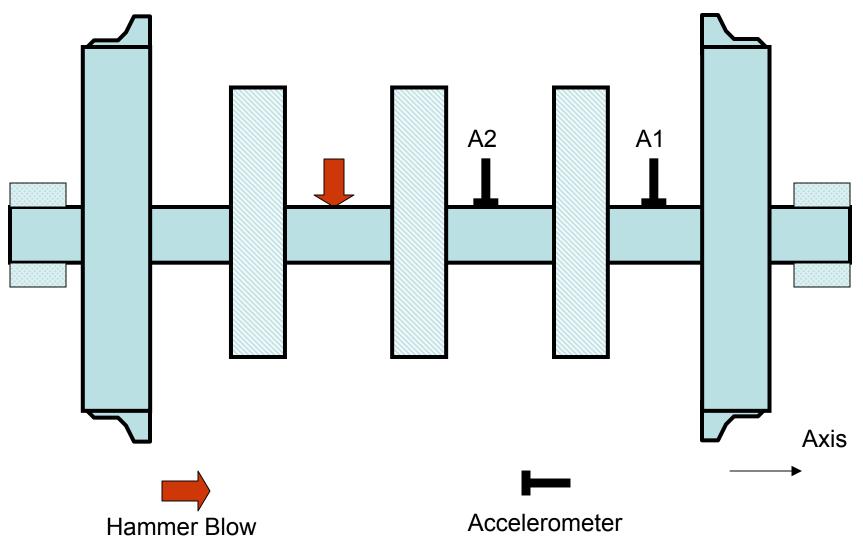
Knorr Disc

Test Conditions-2

J-45


Test 2—Analysis Conditions

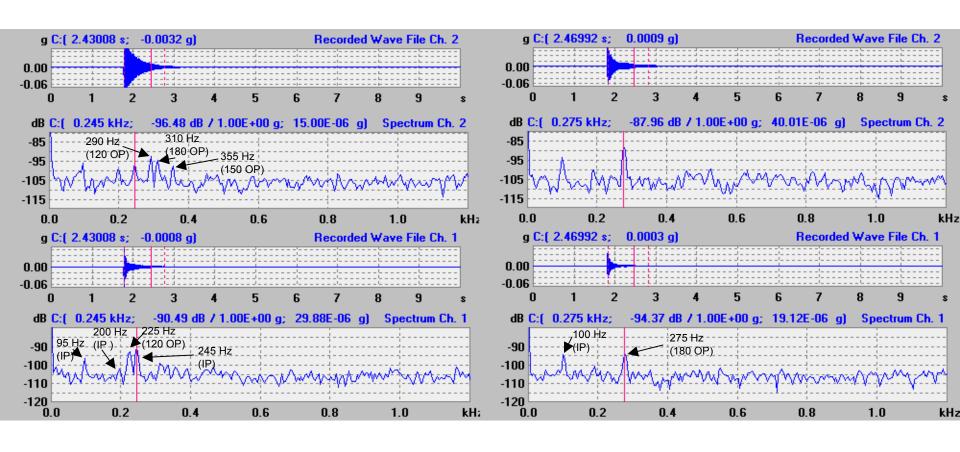
- 45 Oz Dead Blow Hammer Used For Force Input
- FFT Over 1-Second Window, Right After The Impact
- Channel 1–Accelerometer A1
 Channel 2–Accelerometer A2


Vibration Analysis—Test Condition 2

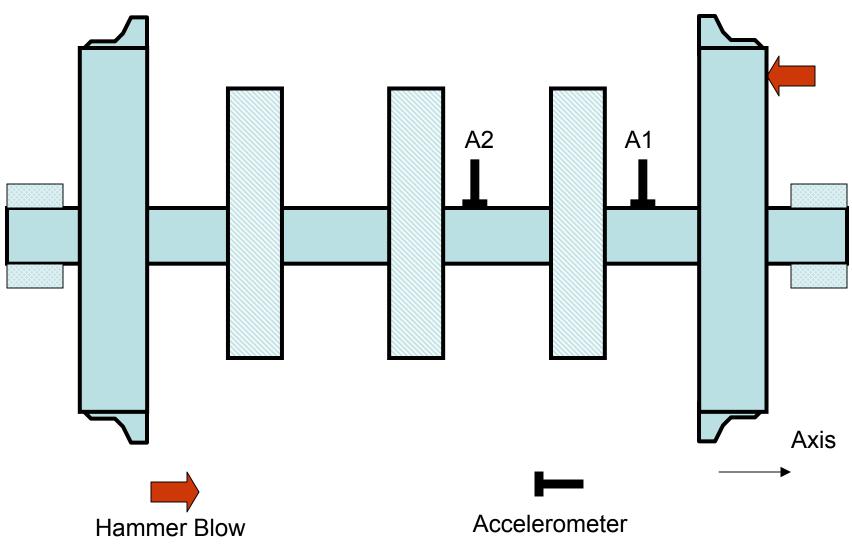
WABTEC/SAB-WABCO Disc

Knorr Disc

Test Conditions-3


Test 3—Analysis Conditions

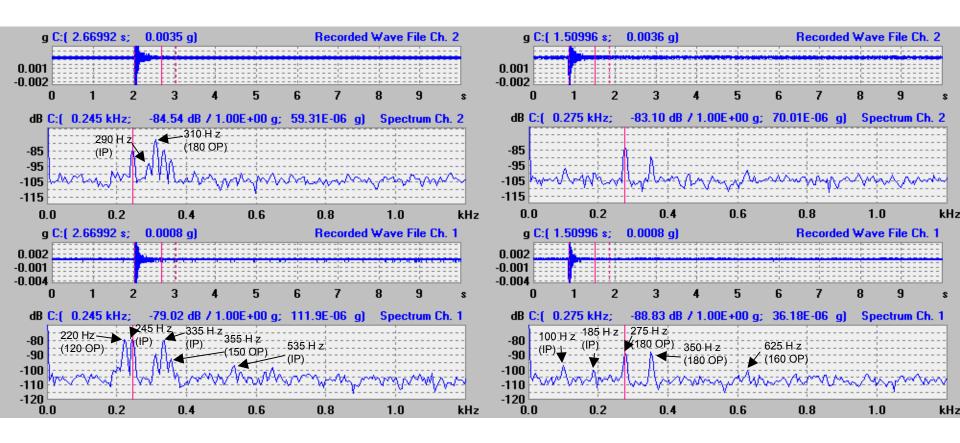
- 45 Oz Dead Blow Hammer Used For Force Input
- FFT Over 1-Second Window, Right After The Impact
- Channel 1–Accelerometer A1
 Channel 2–Accelerometer A2


Vibration Analysis—Test Condition 3

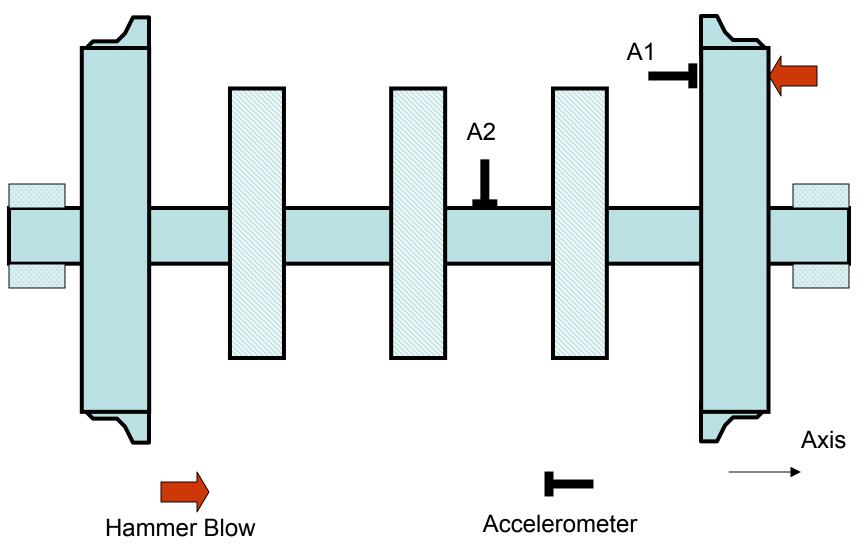
WABTEC/SAB-WABCO Disc

Knorr Disc

Test Conditions-4


Test 4—Analysis Conditions

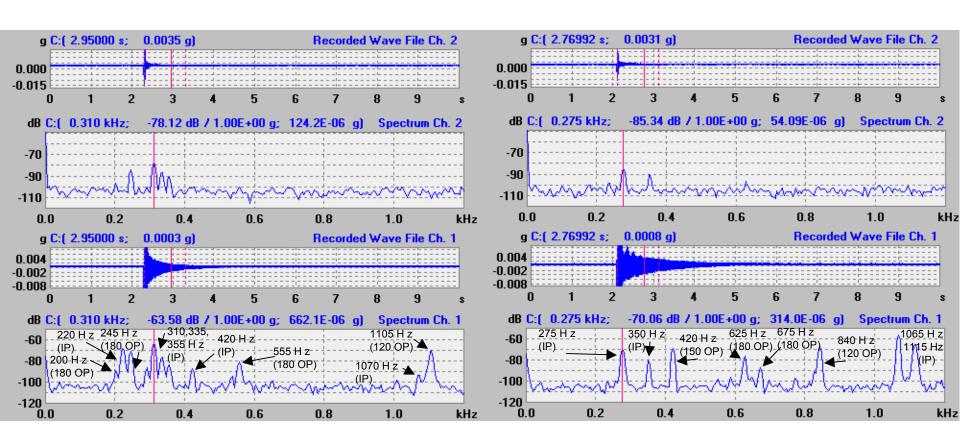
- 45 Oz Dead Blow Hammer Used For Force Input
- FFT Over 1-Second Window, Right After The Impact
- Channel 1–Accelerometer A1
 Channel 2–Accelerometer A2


Vibration Analysis—Test Condition 4

WABTEC/SAB-WABCO Disc

Knorr Disc

Test Conditions-5


Test 5—Analysis Conditions

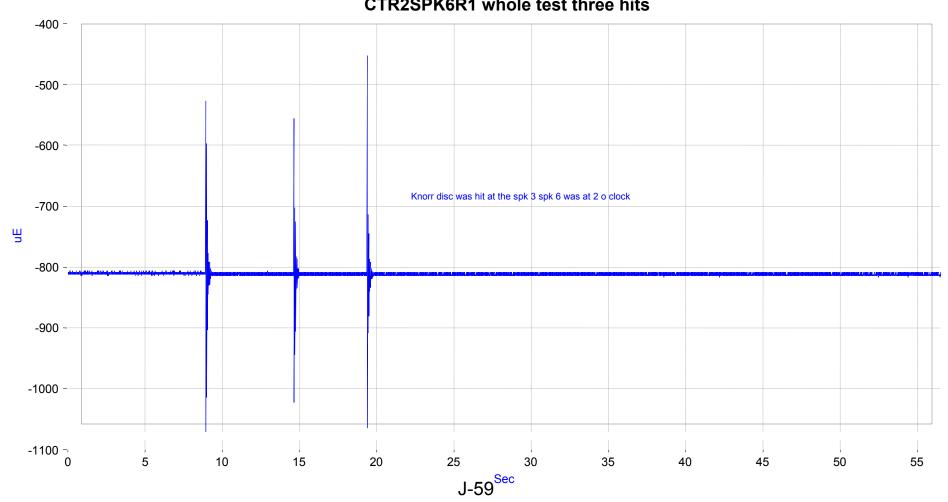
- 45 Oz Dead Blow Hammer Used For Force Input
- FFT Over 1-Second Window, Right After The Impact
- Channel 1–Accelerometer A1
 Channel 2–Accelerometer A2

Vibration Analysis—Test Condition 5

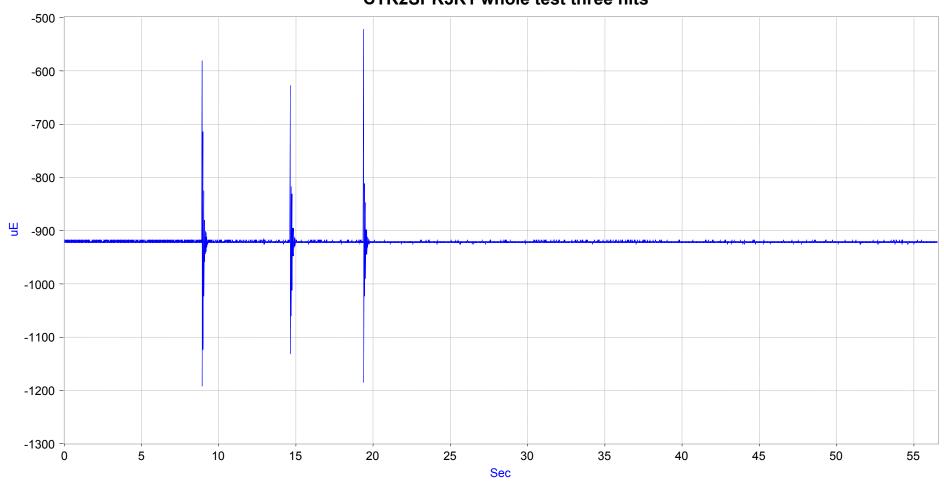
WABTEC/SAB-WABCO Disc

Knorr Disc

Second Vibration Test BOP Mode for Knorr Disc

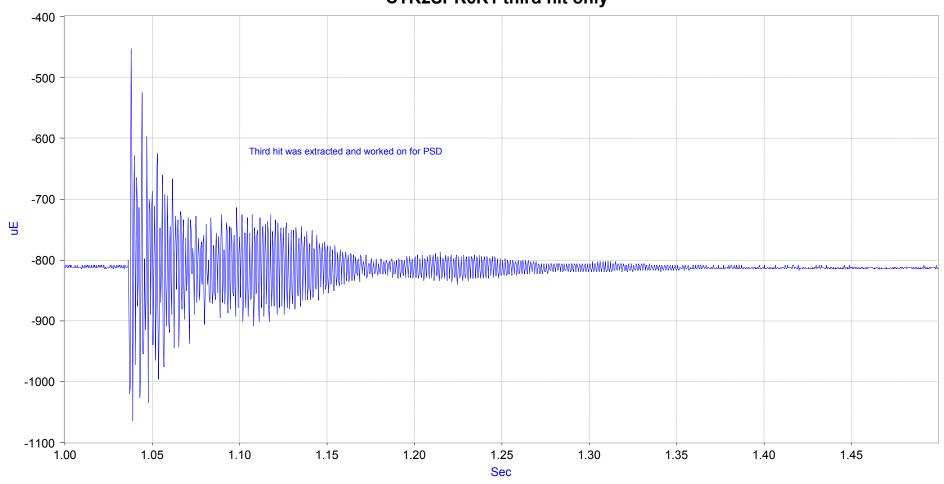

- A BOP Natural Frequency For The Knorr Disc Was Difficult To Resolve Using The Accelerometers And Hammer As Described Above
- Field Data Indicated A BOP Frequency Of ~350 Hz
- A Second Method Of Investigating The BOP Frequency Was Used After Completion Of Phase 3 Testing

Vibration Test, Knorr Disc

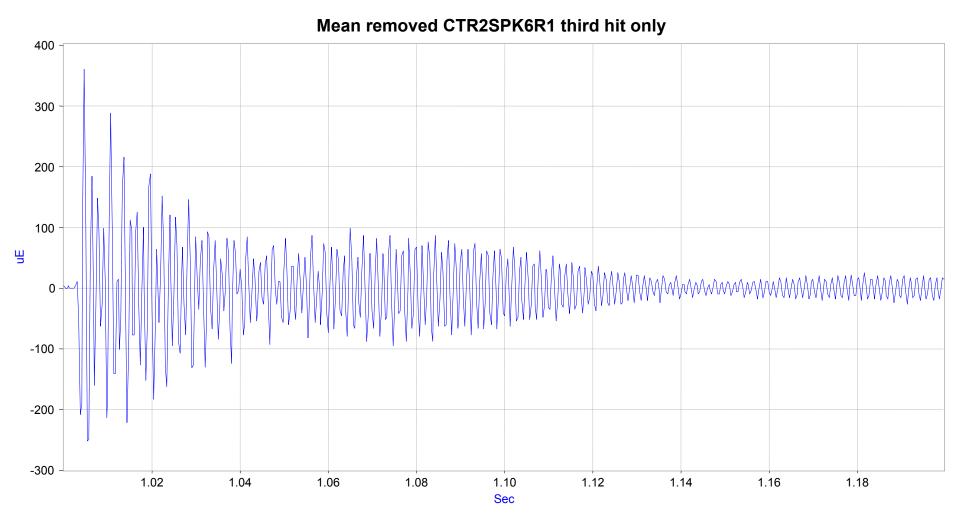

- For This Test, The Strain Gages On Spokes 3
 And 6 Of The Center Disc Of Test Axle 2 Were
 Used To Produce Signals For Analysis
- Test Axle 2 Was Still Installed In B-End Truck Under Coach Car 3534
- A Hammer Was Used To Excite The Disc
- Three Successive Hammer Blows, ~ 5 Seconds Apart, Were Applied To The Friction Ring At The Spoke 3 Position When Spoke 6 Was At The 2 O'Clock Position And Within The Pads
- Brakes Were Not Applied And Not Touching Disc

The Resulting Ring Out Of The Spoke Strain Gage Signals Is Shown Below

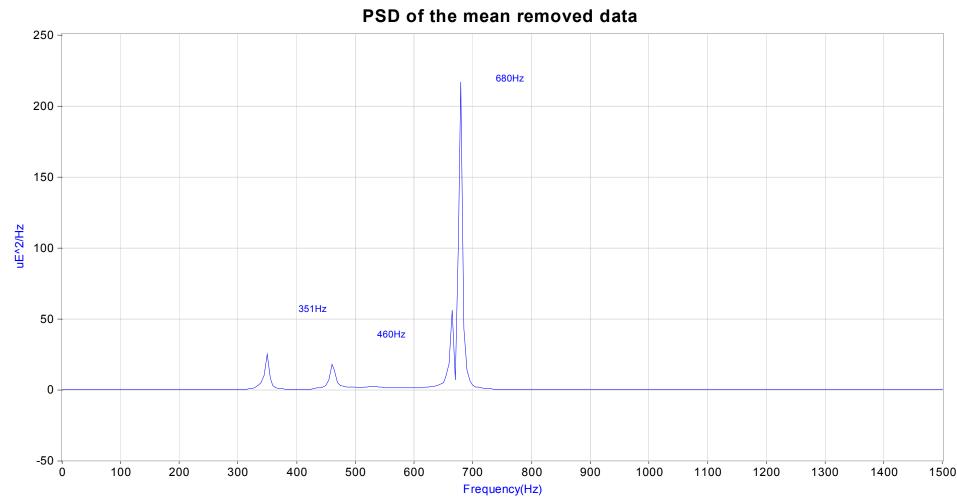
Spoke 6, R1 Strain Gage Signal—Three Hammer Blows CTR2SPK6R1 whole test three hits

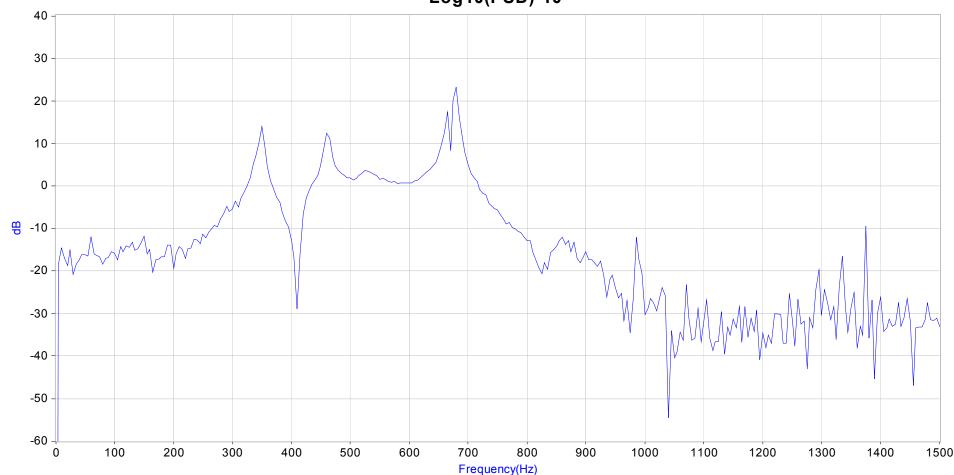


Spoke 3, R1 Strain Gage Signal–Three Hammer Blows CTR2SPK3R1 whole test three hits

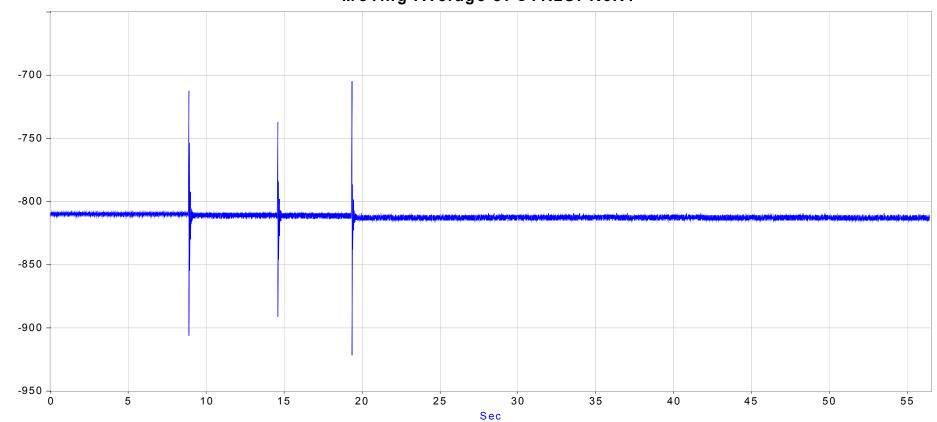


Spoke 6, R1 Strain Gage Signal After Third Hammer Blow


CTR2SPK6R1 third hit only

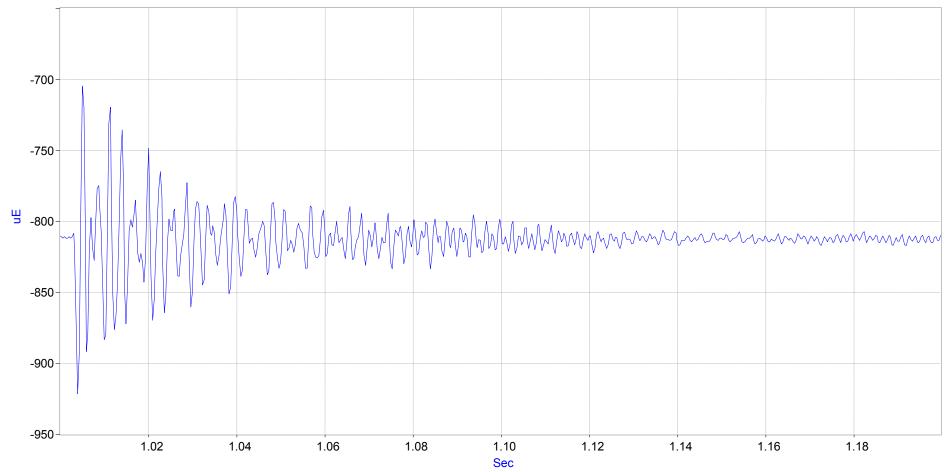

Spoke 6, R1 Strain Gage Signal, Mean Removed, After Third Hammer Blow

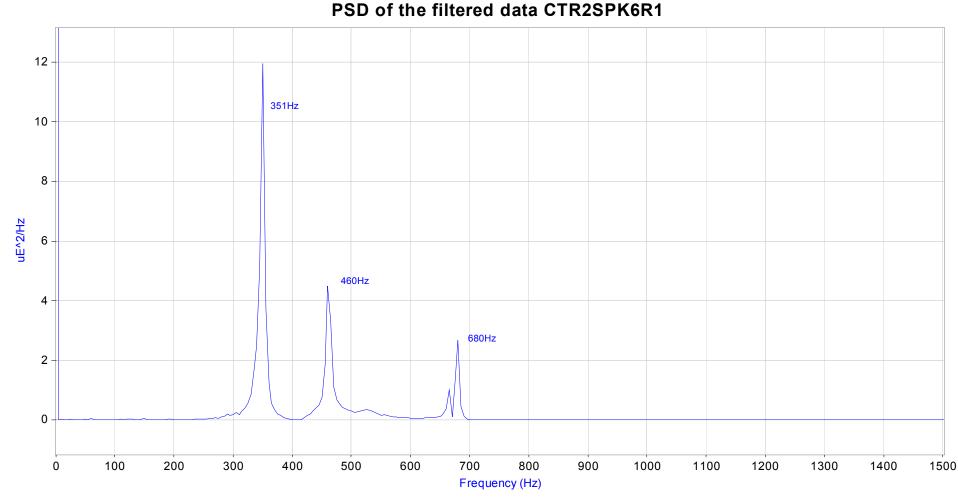
PSD Of Spoke 6, R1 Strain Gage Signal, Mean Removed, After Third Hammer Blow


PSD (dB Scale) Of Spoke 6, R1 Strain Gage Signal, Mean Removed, After Third Hammer Blow Log10(PSD)*10

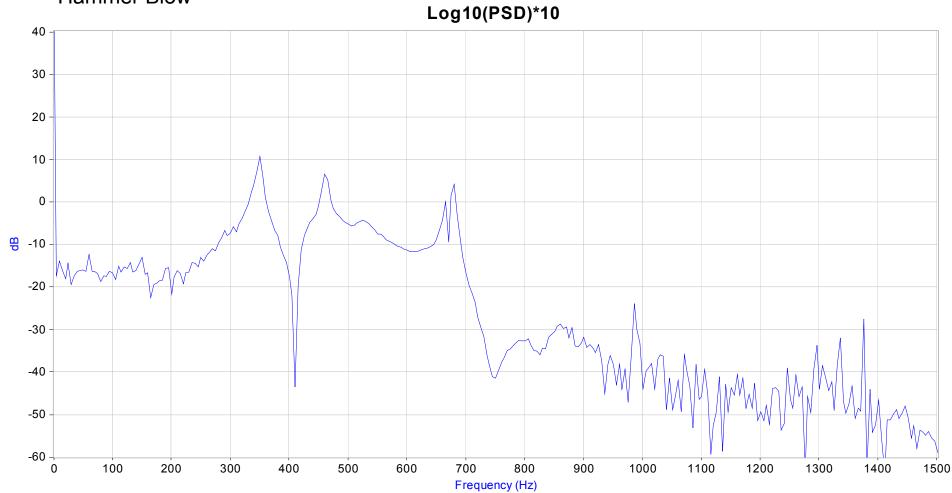

 A 4-Point Moving Average Filter Was Applied To Filter Out The Dominant 680 Hz Mode And Focus On The Lower Frequency Modes

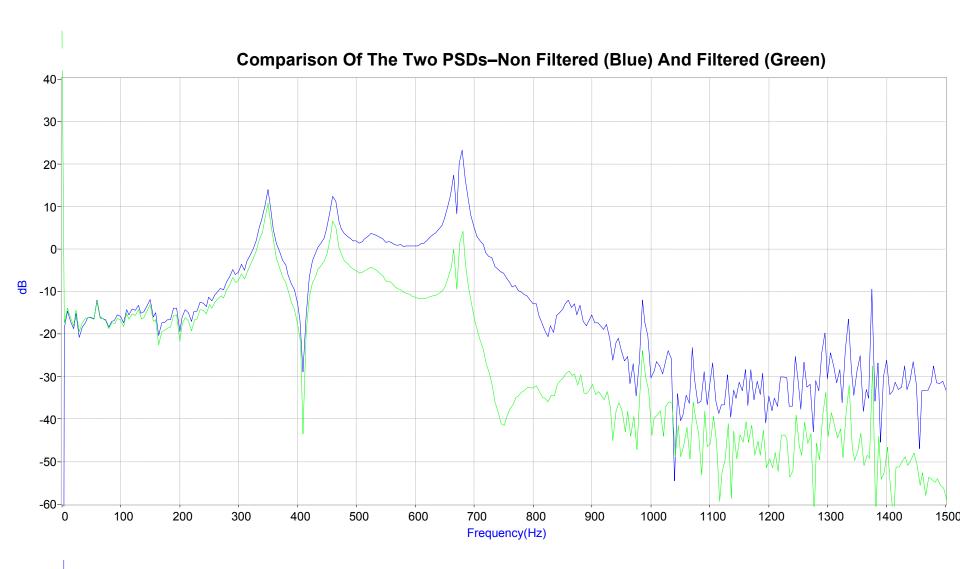
Spoke 6, R1 Strain Gage Signal, 4-Point Moving Average—Three Hammer Blows

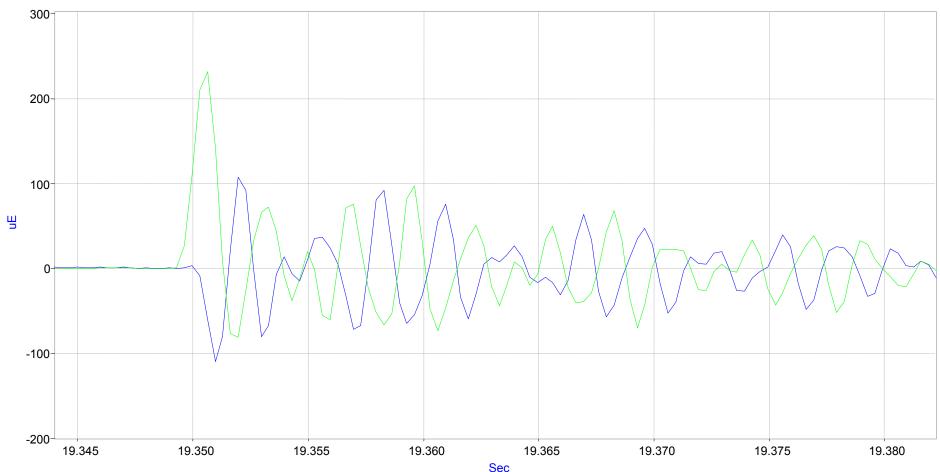

Moving Average of CTR2SPK6R1


Spoke 3, R1 Strain Gage Signal, 4-Point Moving Average—Three Hammer Blows

Spoke 6, R1 Strain Gage Signal, 4-Point Moving Average, After Third Hammer Blow CTR2SPK6R1 filtered third hit only

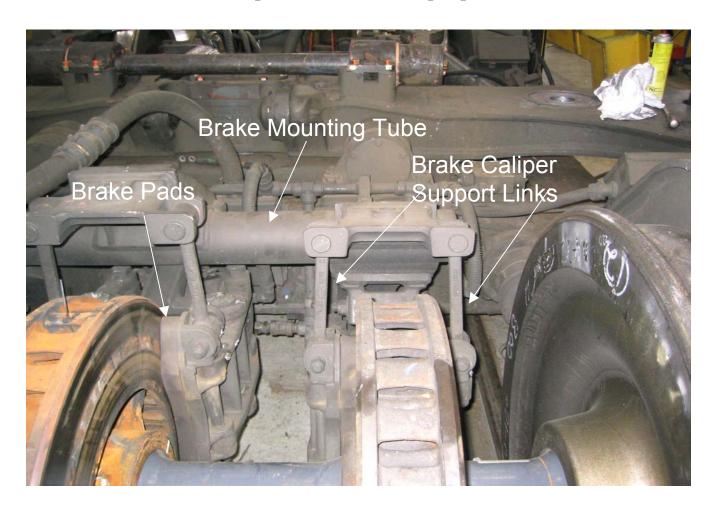



PSD of Spoke 6, R1 Strain Gage Signal, 4-Point Moving Average, After Third Hammer Blow


The Knorr Disc Has A BOP Frequency At 350 Hz

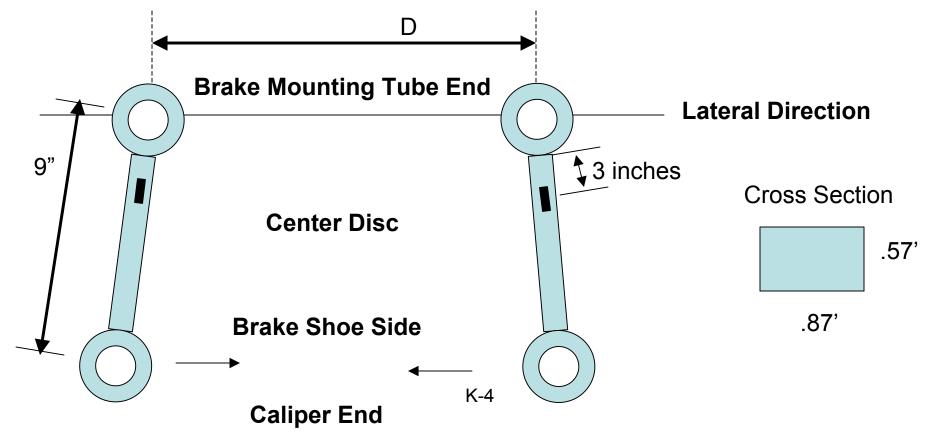
PSD (dB Scale) of Spoke 6, R1 Strain Gage Signal, 4-Point Moving Average, After Third Hammer Blow

Demeaned And Filtered CTR2SPK6R1 And CTR2SPK3R1

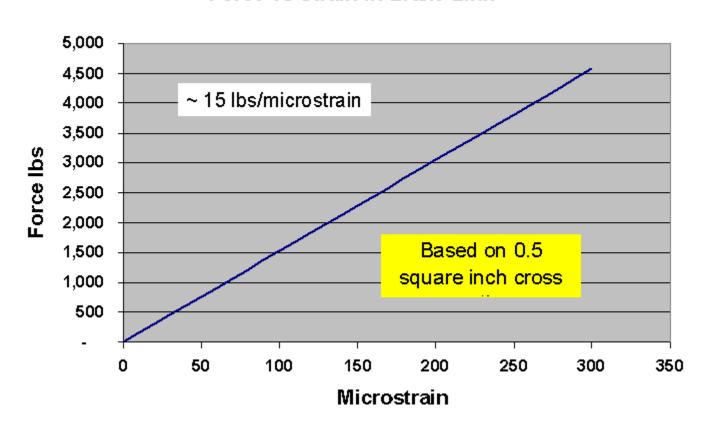

 The Oscillations Seen On Spokes 3 And 6 Are Out Of Phase With Respect To Each Other

Appendix K. Brake Support Links

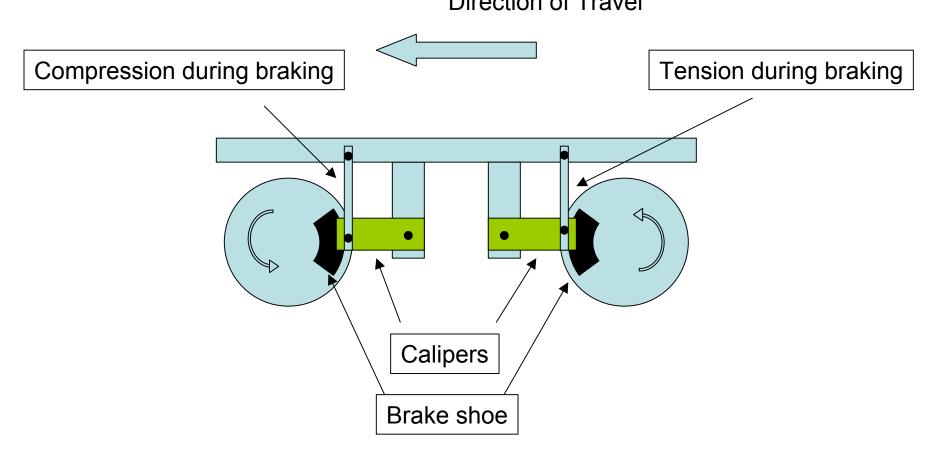
<u>Section</u>	<u>Page</u>
Link Descriptions	K-2
Examples of Link Behavior	K-8
June 16–File 18, Braking, No Sustained Oscillations,	
Axle Trailing	K-11
June 18–File 24, Braking, No Sustained Oscillations,	
Instrumented Axle in Lead	K-20
June 18–File 24, Braking, Sustained Oscillations,	
Instrumented Axle in Lead	K-29
June 17–File 25, Braking Sustained Oscillation,	
Instrumented Axle in Lead	K-42
Observations	K-54


Link Descriptions

Brake Caliper Support Links


Gage Location

- 3 Inches Down From Top
- Face Inside—Towards Center Of Truck


Force Versus Strain In Brake Link

Force vs Strain in Brake Link

Expected Behavior

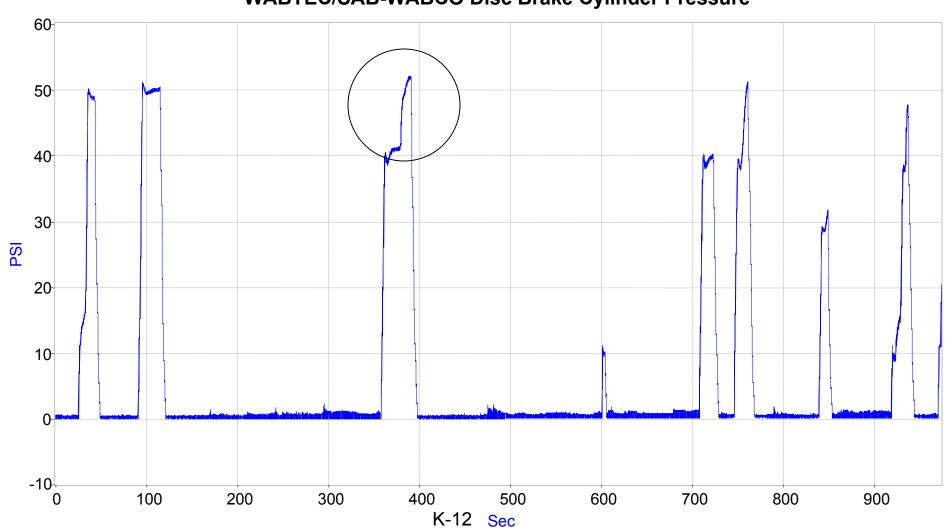
Direction of Travel

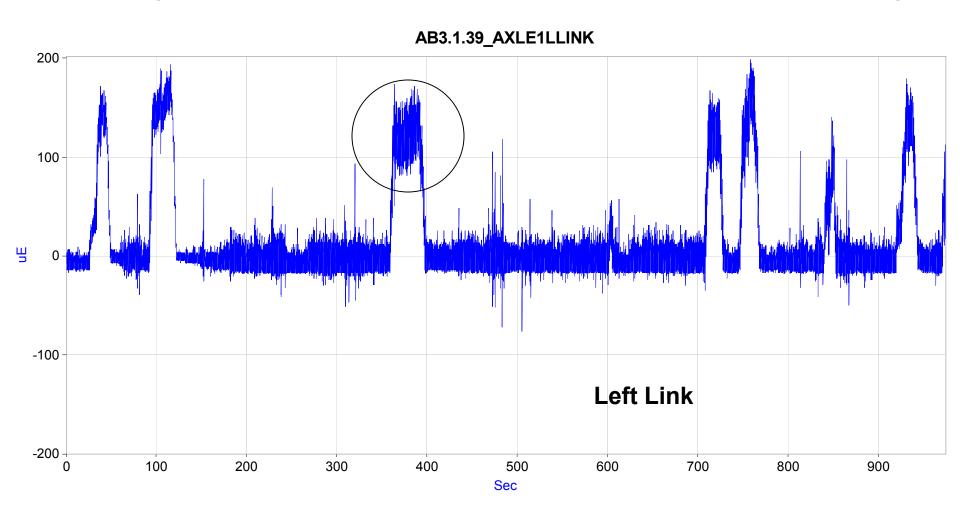
Major Assumption

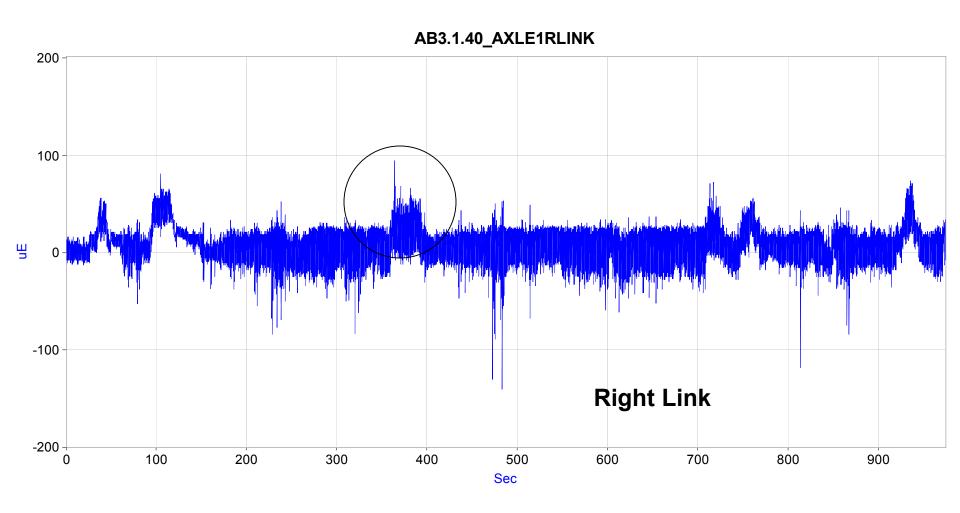
- The Strain Measured By The Single Strain
 On The Link Is A Good Indication Of Strain
 In Link
- Should Be A Good Assumption Since The Link Is Pinned At Both Ends

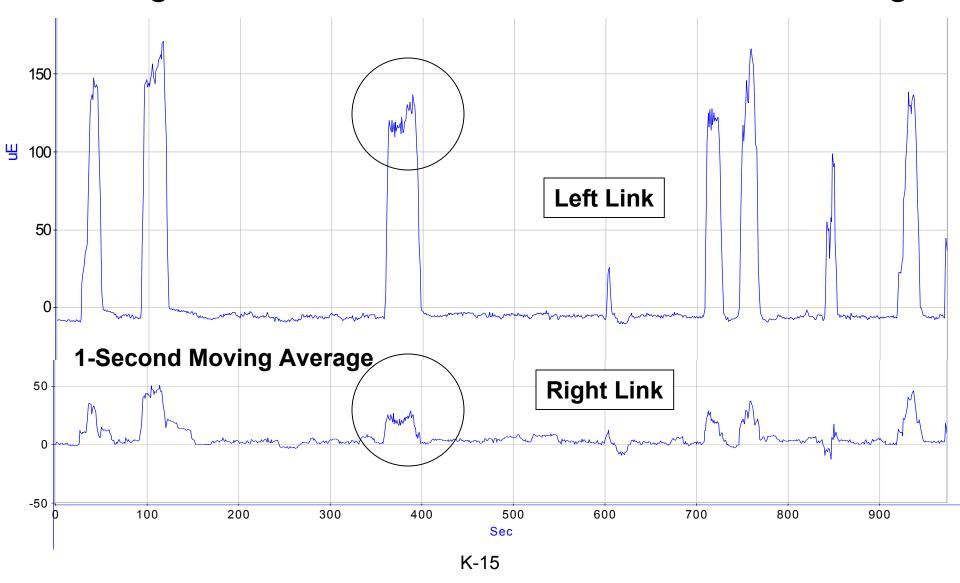
Examples Of Link Behavior

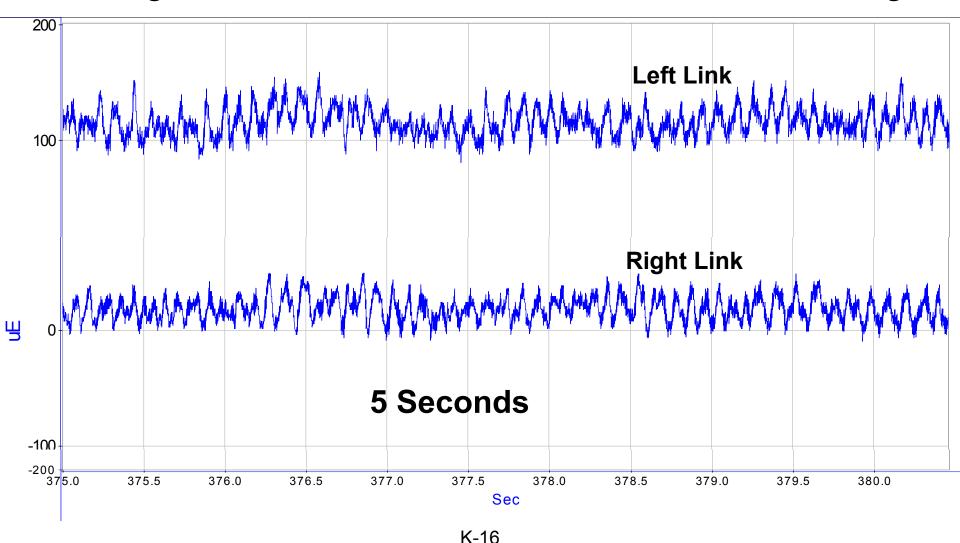
Data Selection

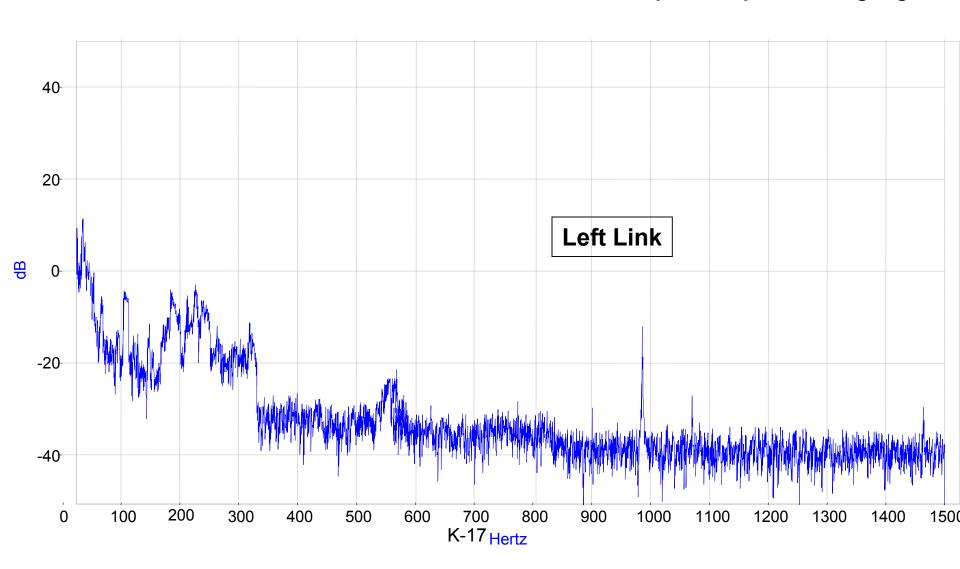

- All Under Braking Condition
- Brake Cylinder Pressure ~ 50 psi
- Instrumented Axle In Lead Position
 - During Sustained Oscillations
 - During Non-Sustained Oscillations
- Instrumented Axle In Trail Position
 - During Non-Sustained Oscillations

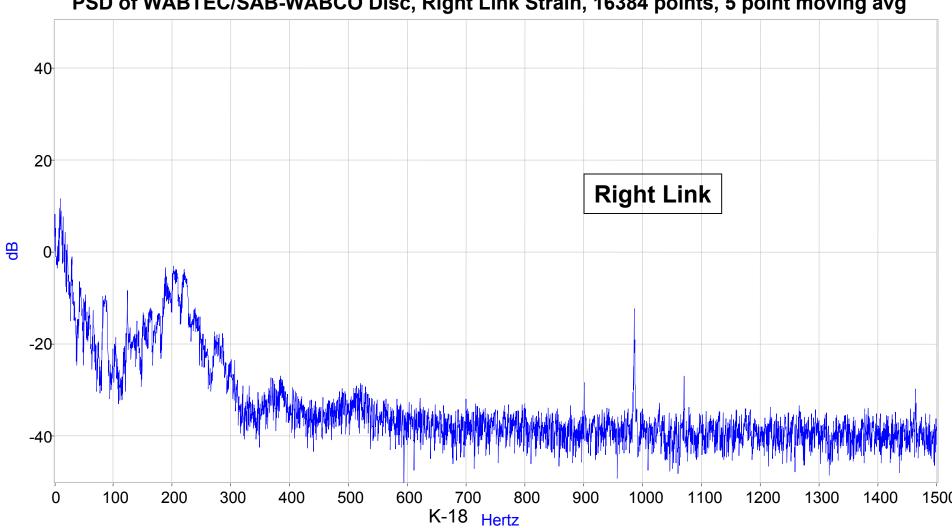

Table K.1. Examples Analyzed


Date/File	Sustained Oscillation	Axle	Time in File (sec.)	Speed (mph)
June 16–File 18	No	Trail	375	94
June 18–File 24	No	Lead	310	117
June 18–File 24	Yes	Lead	580	110
June 17–File 25	Yes	Lead	559	69

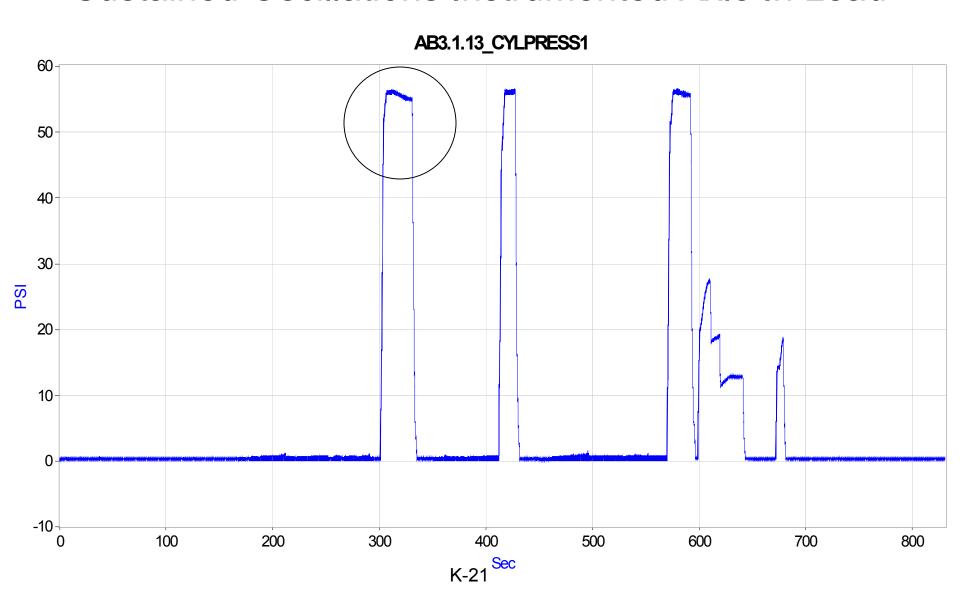

June 16-File 18 Braking No Sustained Oscillations **Axle Trailing** t = 375 seconds Speed = 94 mph

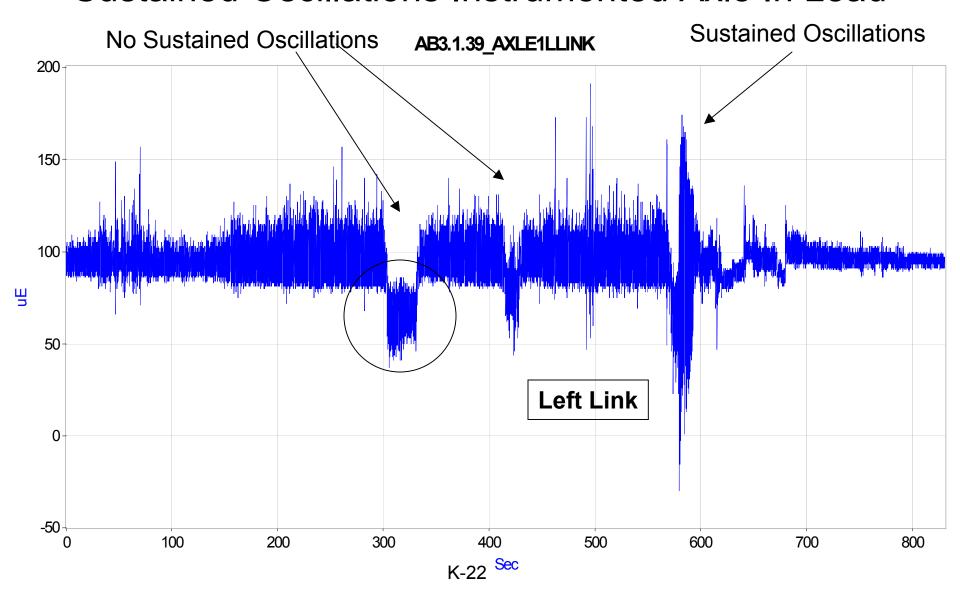

WABTEC/SAB-WABCO Disc Brake Cylinder Pressure

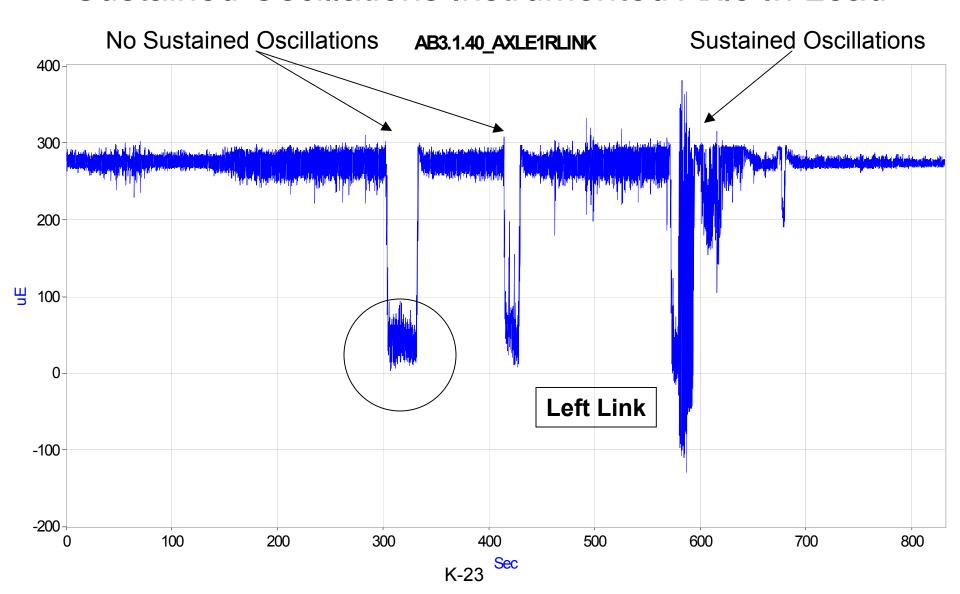


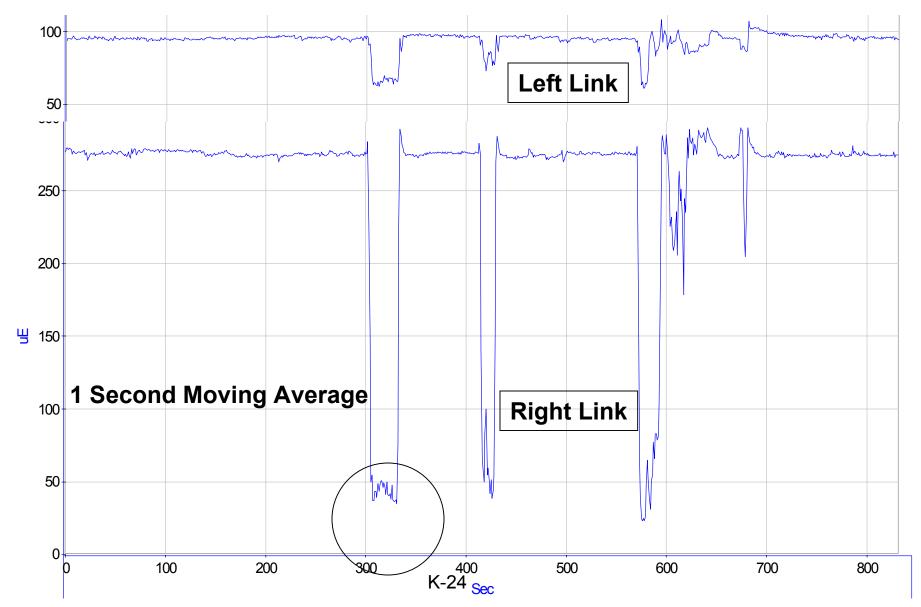


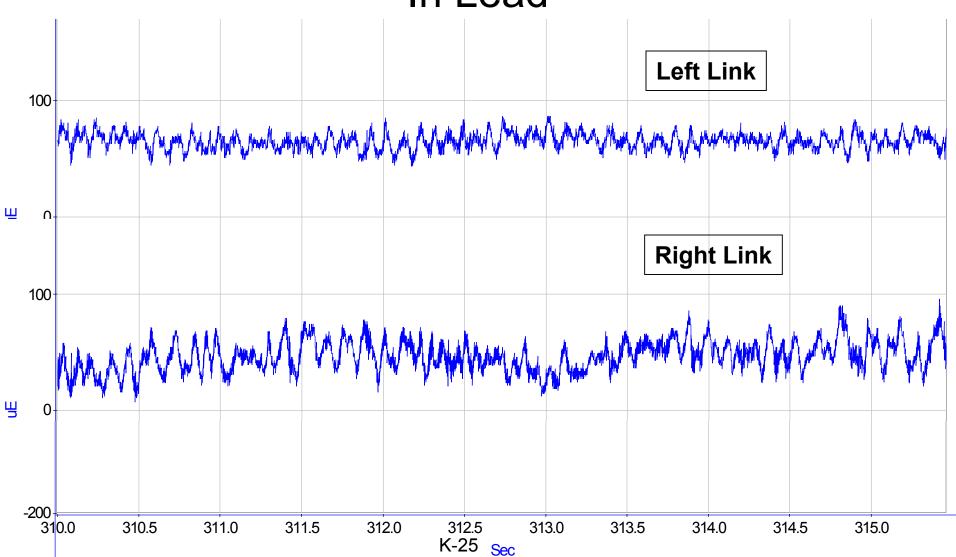
PSD of WABTEC/SAB-WABCO Disc, Left Link Strain, 16384 points, 5 point moving avg

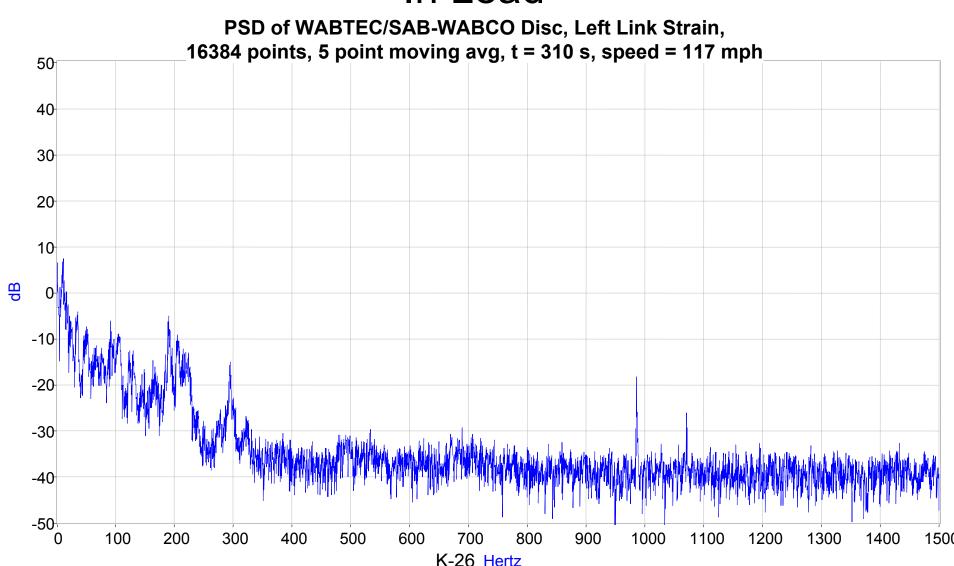

PSD of WABTEC/SAB-WABCO Disc, Right Link Strain, 16384 points, 5 point moving avg

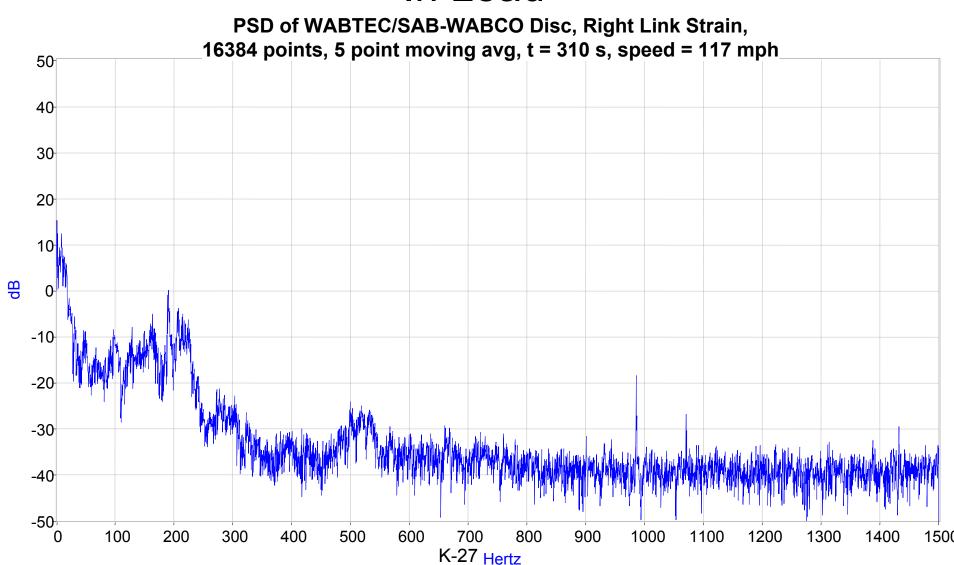


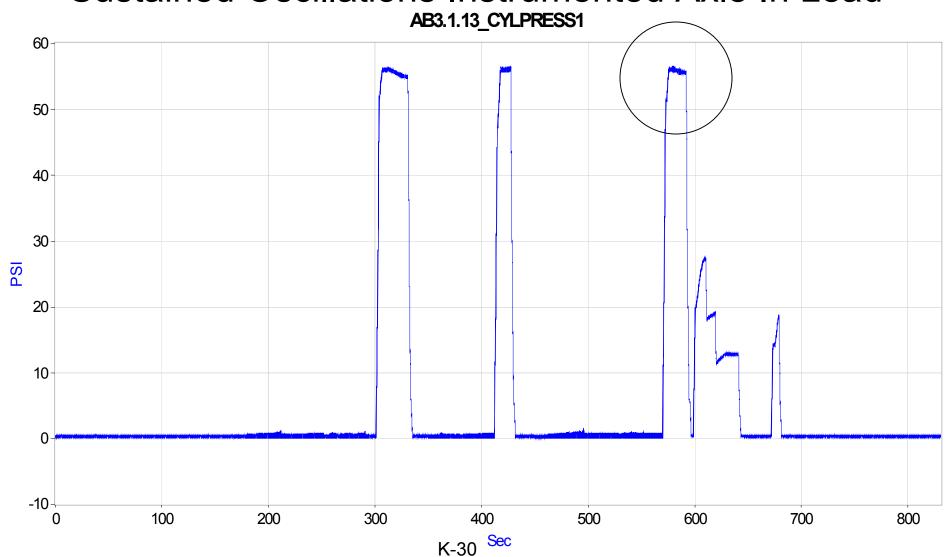

Date/File/Time	Sustained Oscillation	Axle	Harmonic Content	Strain Change
June 16 – File 18 - 375	No	Trail	No	Tension

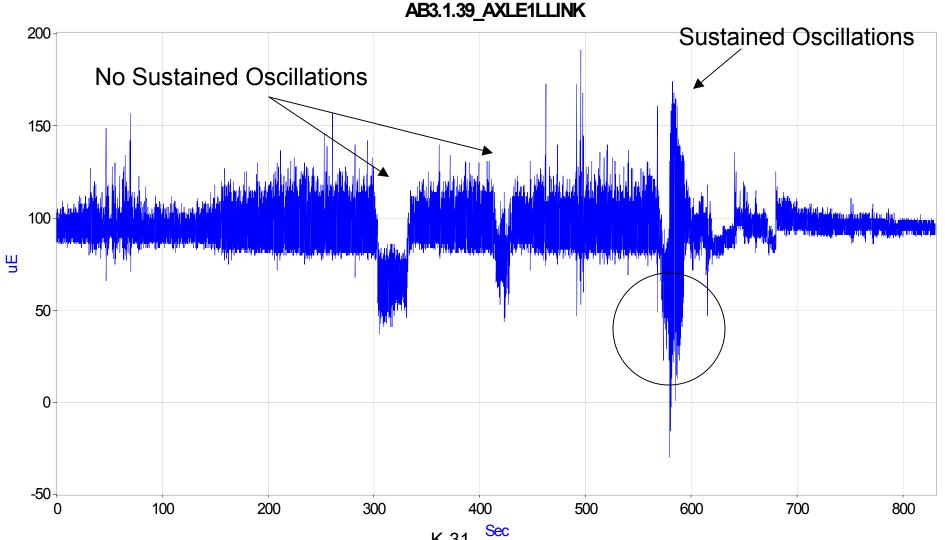

Date/File/Time	Sustained Oscillation	Axle	Left Link Microstrain	Right Link Microstrain
June 16 – File 18 - 375	No	Trail	+130	+21


June 18–File 24 Braking
No Sustained Oscillations
Instrumented Axle In Lead
t = 310 Seconds
Speed = 117 mph



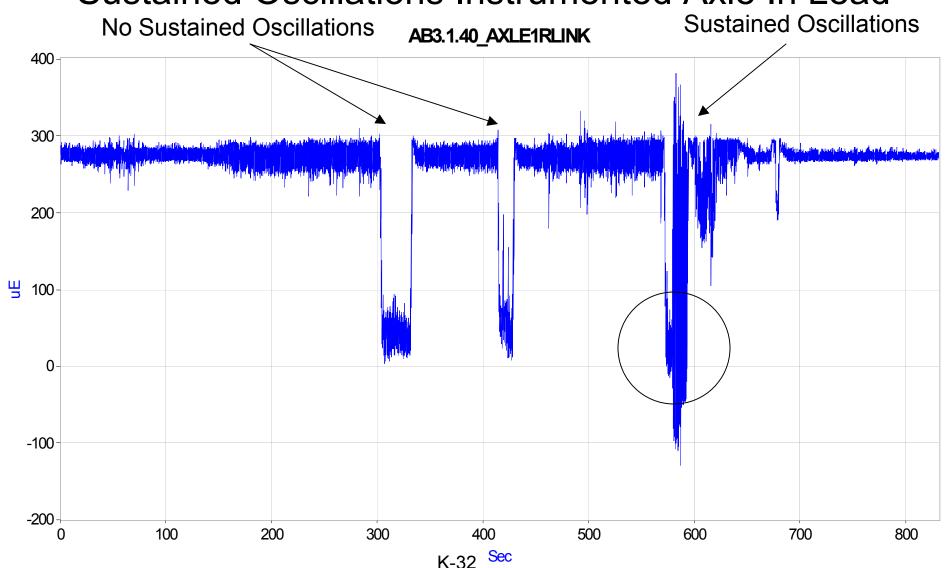



Date/File/Time	Sustained Oscillation	Axle	Harmonic Content	Strain Change
June 18 – File 24 - 310	No	Lead	No	Compression

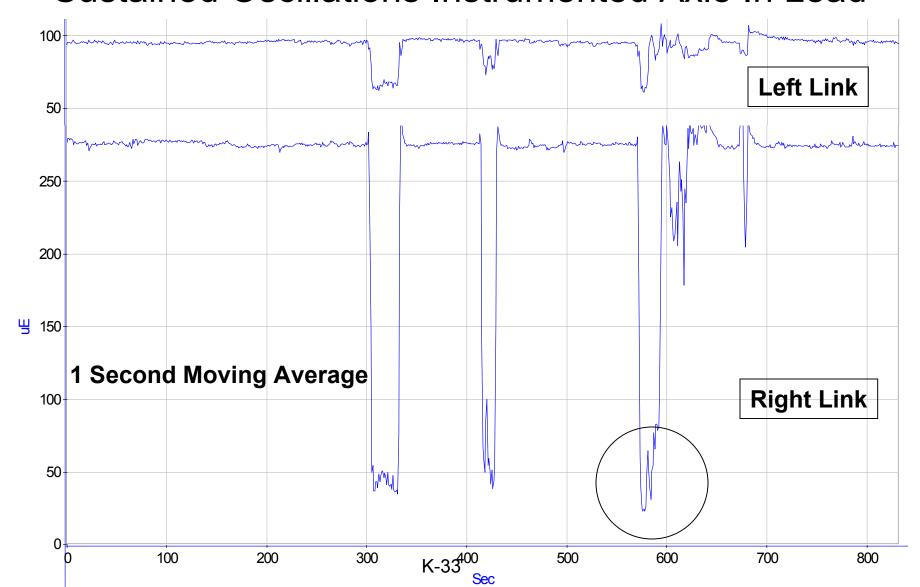

Date/File/Time	Sustained Oscillation	Axle	Left Link Microstrain	Right Link Microstrain
June 18 – File 24 - 310	No	Lead	-32	-231

June 18-File 24 **Braking Sustained Oscillations** Instrumented Axle in Lead t = 580 seconds Speed = 110 mph

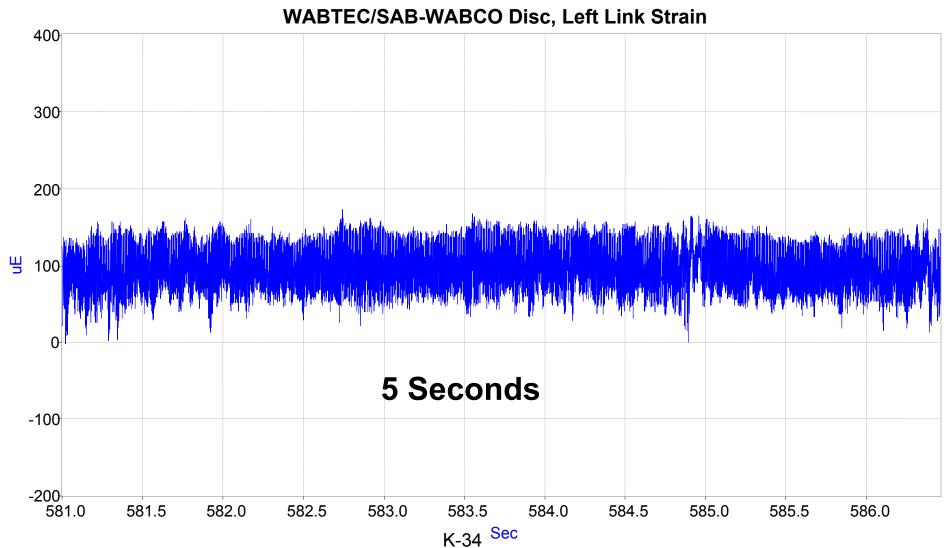
June 18–File 24–580 Seconds Braking


Sustained Oscillations Instrumented Axle In Lead

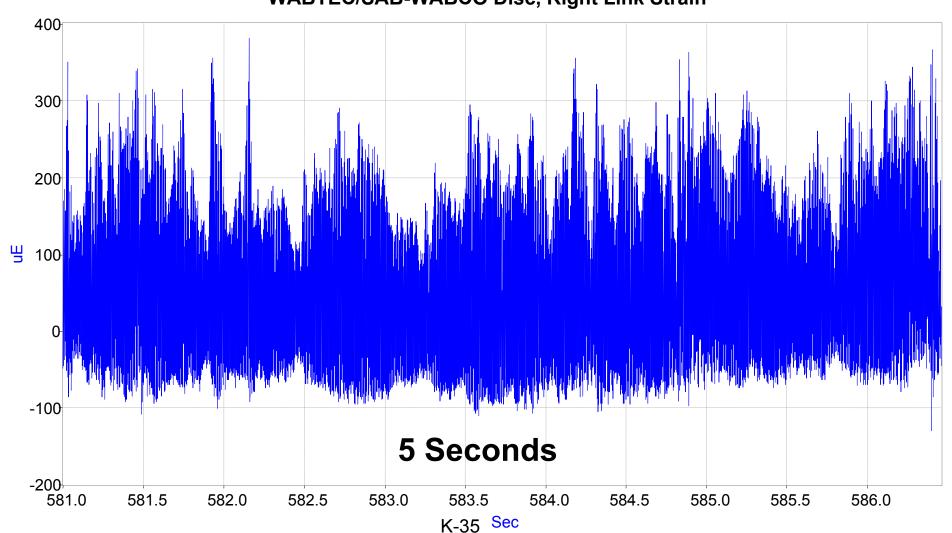
June 18–File 24–580 Seconds Braking


Sustained Oscillations Instrumented Axle In Lead

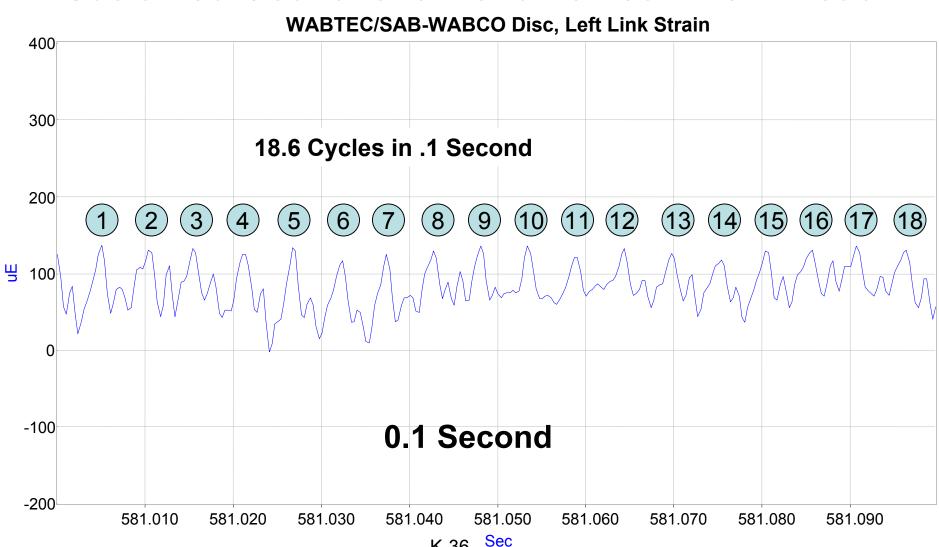
June 18–File 24–580 Seconds


Braking

Sustained Oscillations Instrumented Axle In Lead

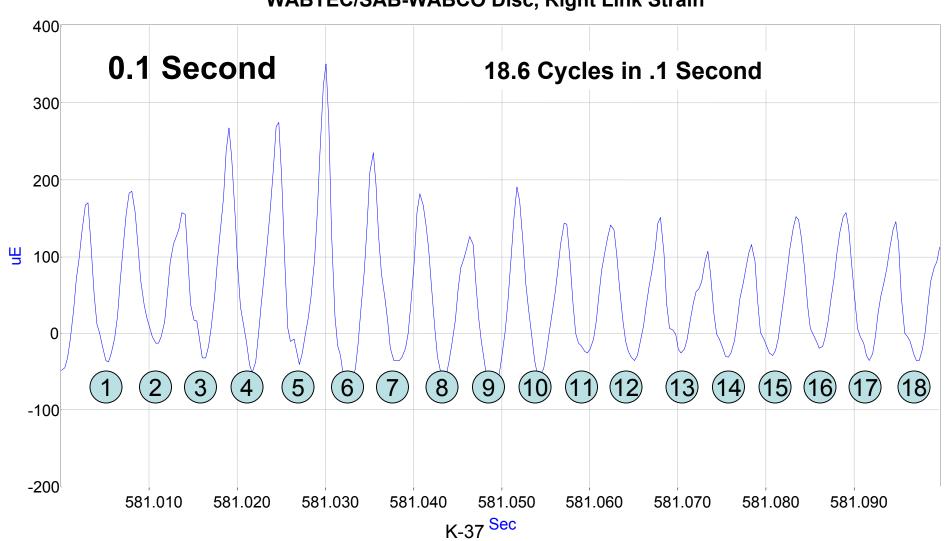

June 18-File 24-580 Seconds **Braking**

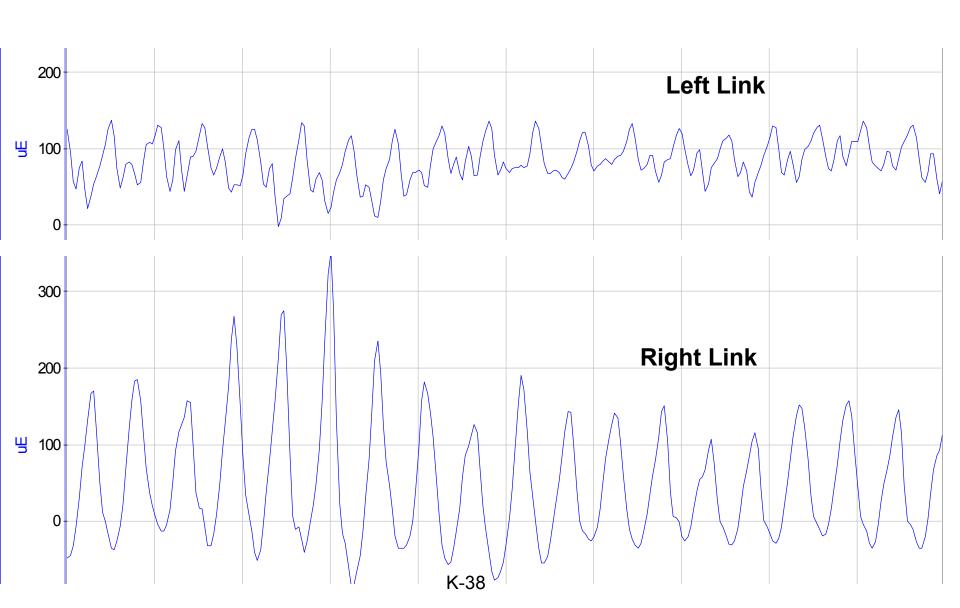
Sustained Oscillations Instrumented Axle In Lead


June 18–File 24–580 Seconds Braking

Sustained Oscillations Instrumented Axle In Lead WABTEC/SAB-WABCO Disc, Right Link Strain

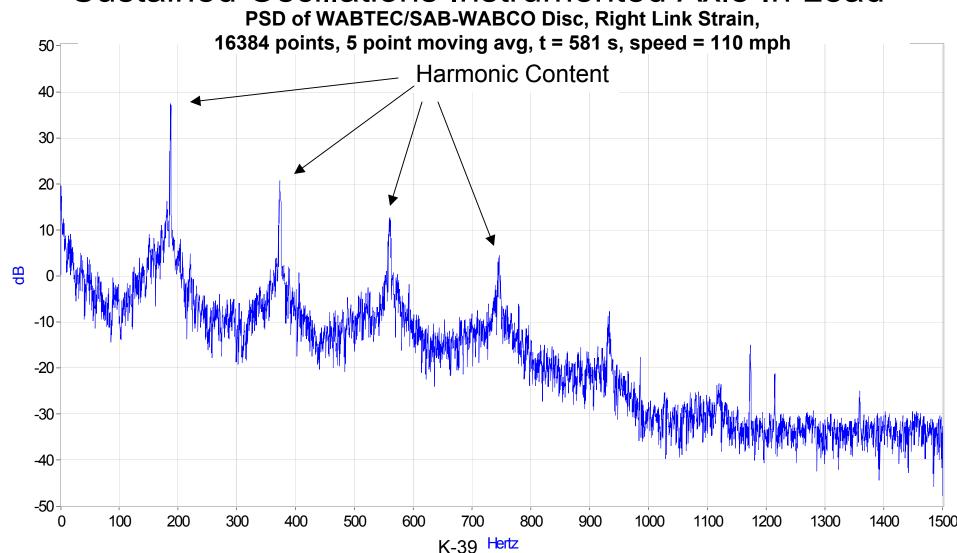
June 18-File 24-580 Seconds Braking


Sustained Oscillations Instrumented Axle In Lead

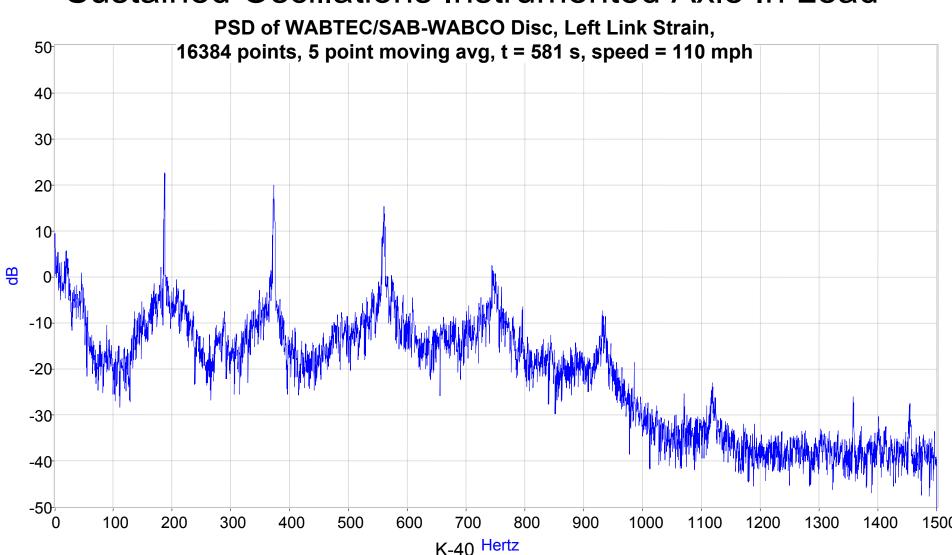

K-36

June 18-File 24 (Brake, BOP)

WABTEC/SAB-WABCO Disc, Right Link Strain

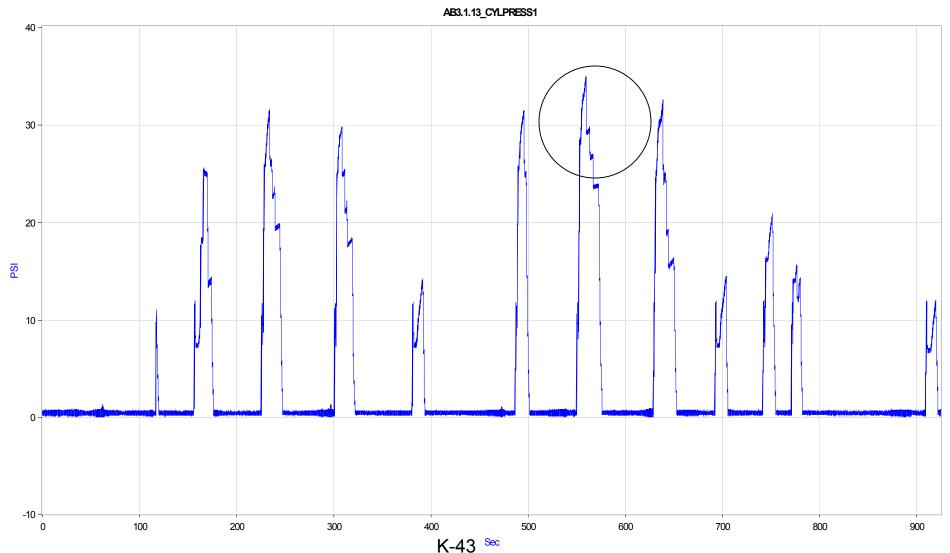


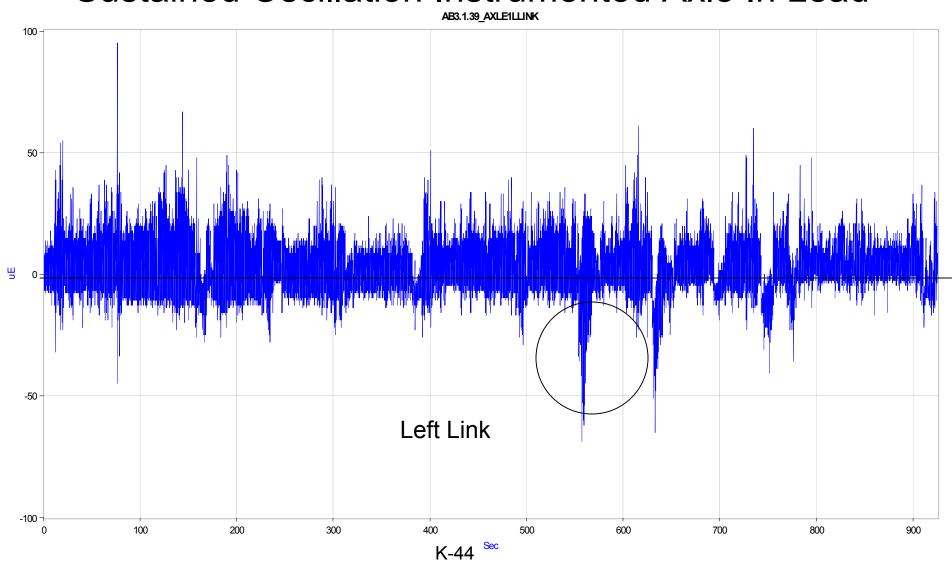
Links Out Of Phase

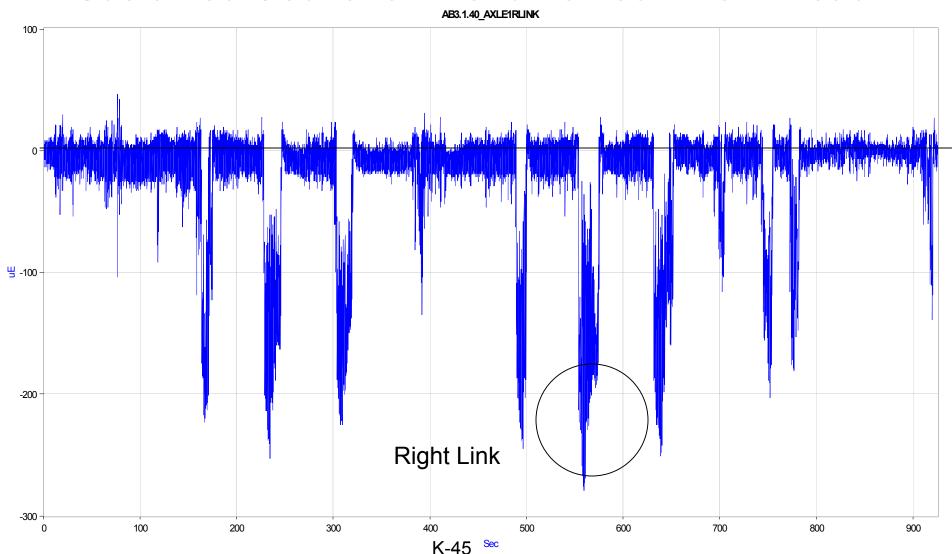

June 18–File 24–580 Seconds Braking

Sustained Oscillations Instrumented Axle In Lead

June 18–File 24–580 Seconds Braking

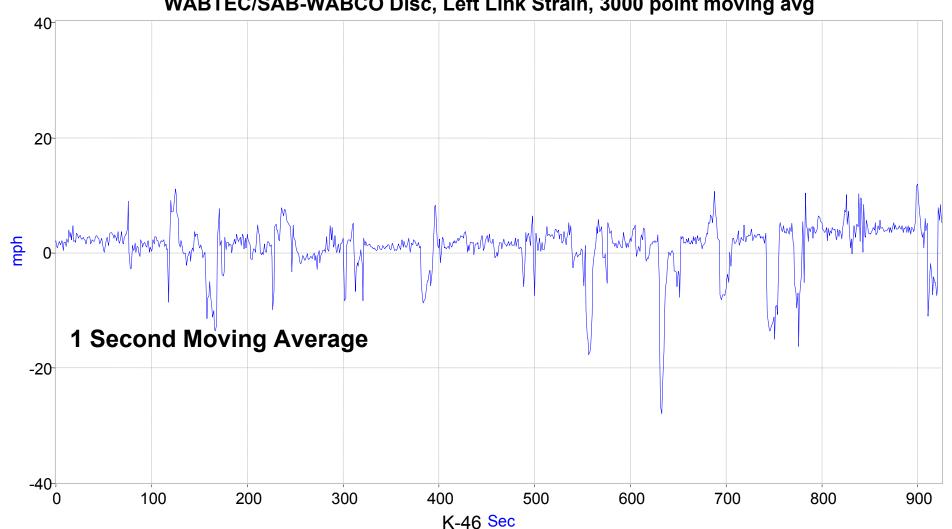

Sustained Oscillations Instrumented Axle In Lead




Date/File/Time	Sustained Oscillation	Axle	Harmonic Content	Strain Change
June 18 – File 24 - 58	Yes	Lead	Yes	Compression

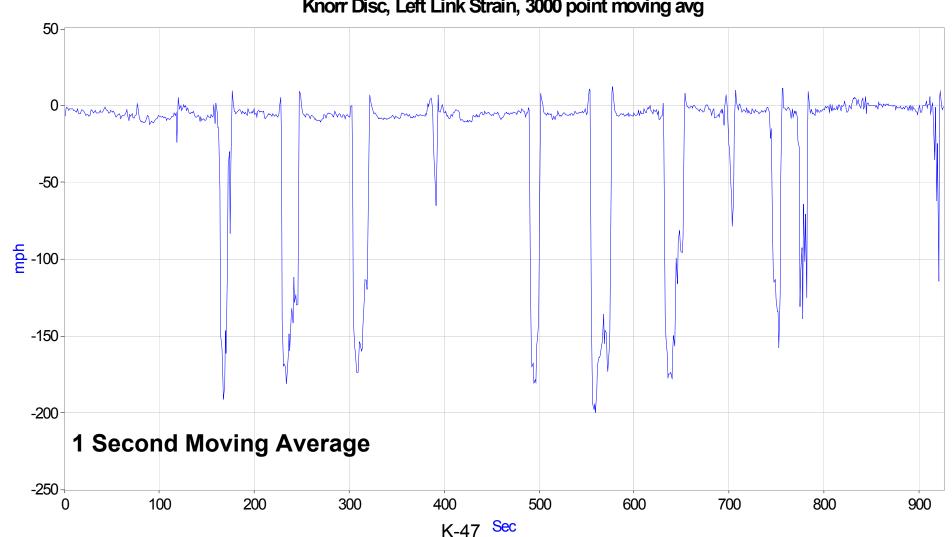
Date/File/Time	Sustained Oscillation	Axle	Left Link Microstrain	Right Link Microstrain
June 18 – File 24 - 580	Yes	Lead	-32	-221

June 17-File 25 Braking Sustained Oscillation Instrumented Axle In Lead t = 559 seconds Speed = 68 mph

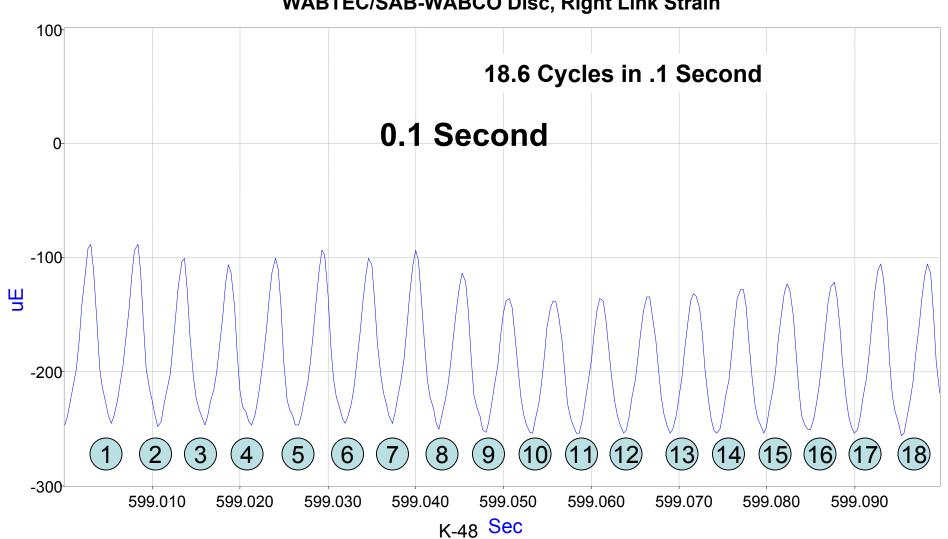


June 17-File 25-559 Seconds Braking

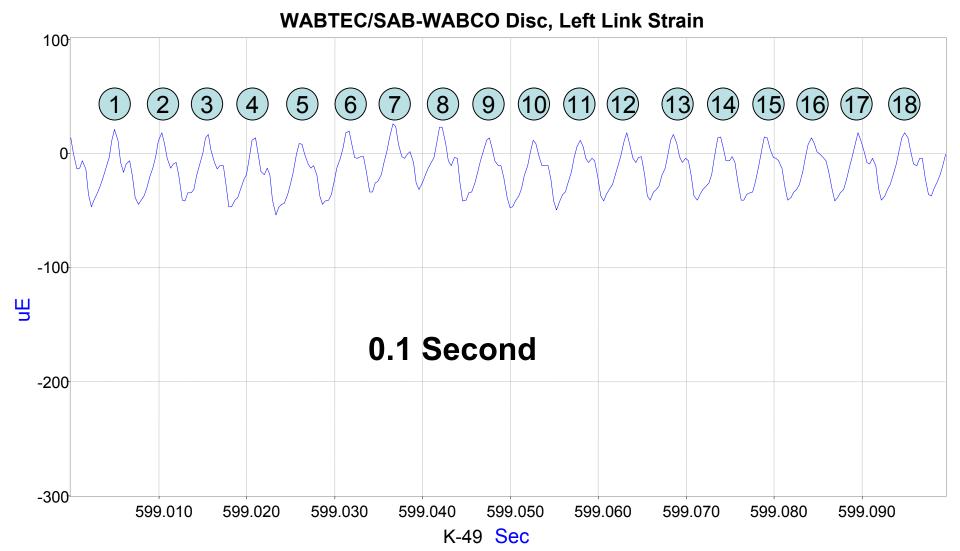
Sustained Oscillation Instrumented Axle In Lead


WABTEC/SAB-WABCO Disc, Left Link Strain, 3000 point moving avg

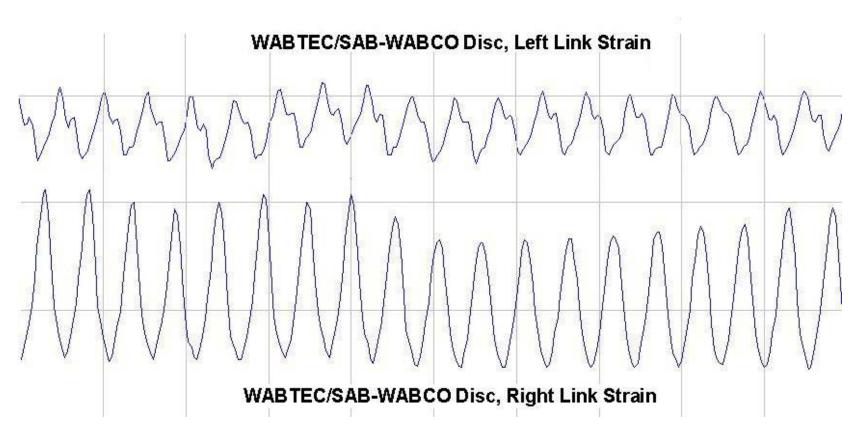
June 17-File 25-559 Seconds **Braking**


Sustained Oscillation Instrumented Axle In Lead

Knorr Disc, Left Link Strain, 3000 point moving avg

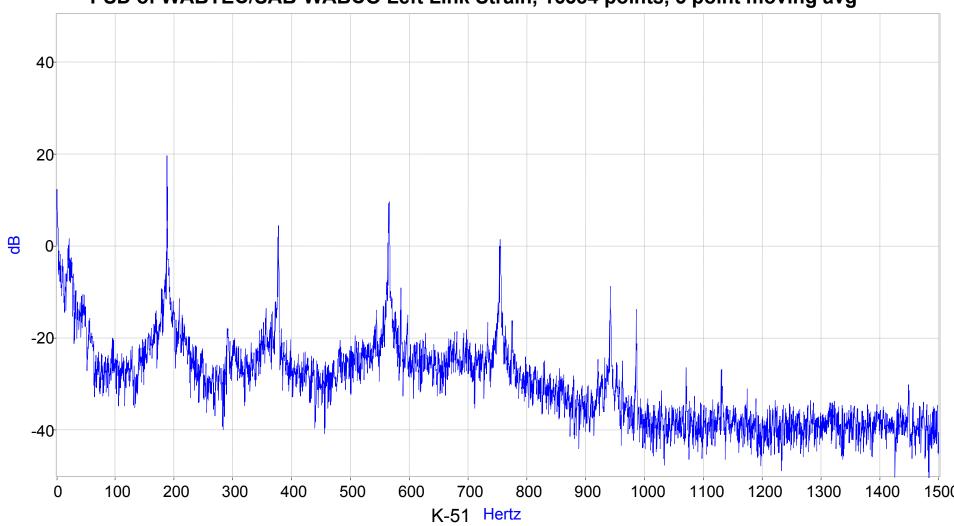

June 17–File 25–559 Seconds Braking

Sustained Oscillation Instrumented Axle In Lead WABTEC/SAB-WABCO Disc, Right Link Strain

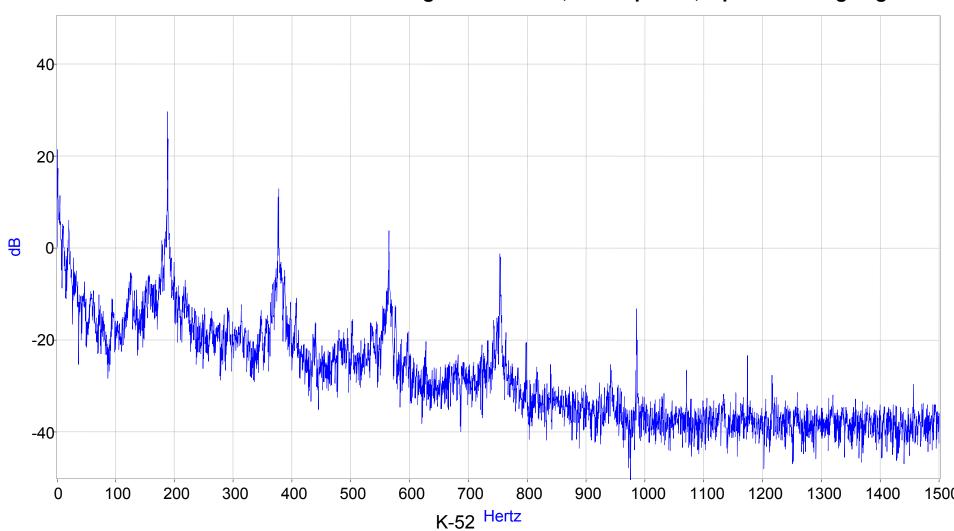


June 17–File 25–559 Seconds Braking

Sustained Oscillation Instrumented Axle In Lead


Sustained Oscillation Instrumented Axle In Lead Right And Left Link Out Of Phase

June 17–File 25–559 Seconds Braking


Sustained Oscillation Instrumented Axle In Lead

PSD of WABTEC/SAB-WABCO Left Link Strain, 16384 points, 5 point moving avg

June 17–File 25–559 Seconds Braking

Sustained Oscillation Instrumented Axle In Lead PSD of WABTEC/SAB-WABCO Right Link Strain, 16384 points, 5 point moving avg

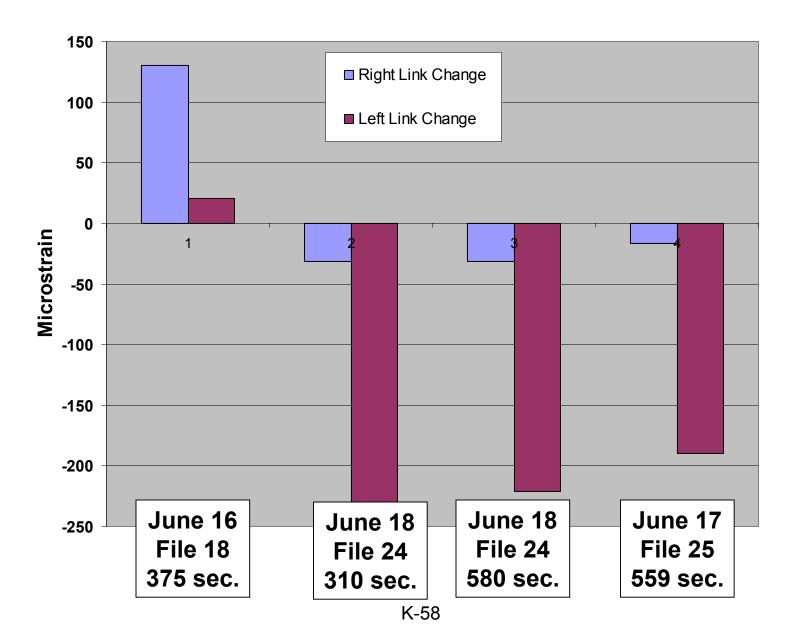
Date/File/Time	Sustained Oscillation	Axle	Harmonic Content	Strain Change
June 16 – File 18 - 375	No	Trail	No	Tension

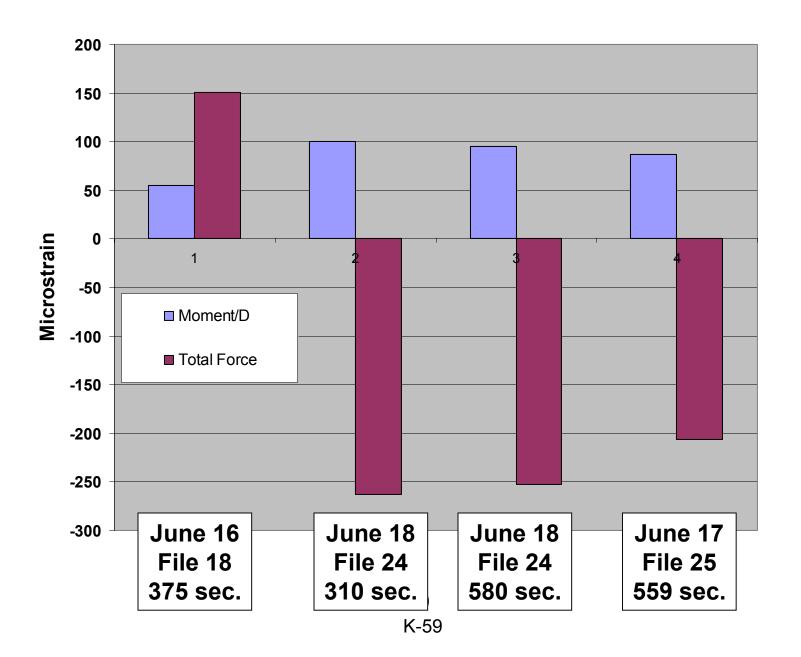
Date/File/Time	Sustained Oscillation	Axle	Left Link Microstrain	Right Link Microstrain
June 17 – File 25 - 559	Yes	Lead	-17	-189

Observations

- No Sustained Oscillations
 - Small Dynamic Link Strains
 - No Harmonic Link Content
 - Brake Links In Compression Or Tension
- Sustained Oscillations
 - Only Observed When Brake Links In Compression
 - Large Dynamic Link Strains
 - Harmonic Content–Fundamental Frequency
 - ~ 187 Hz
 - May Indicate Stick-Slip Behavior

Observations


- The Two Links Show Some Similar Behaviors:
 - Both Demonstrate Same Direction Of Strain Change
 - Both Have Similar Shape In The Time Domain
- Left Link
 - Larger Than Right Link For Tension (Trailing Axle) By Factor Of 6
- Right Link
 - Larger Than Left Link For Compression
 (Leading Axle) By Factor Of 7 To 10


Table K.2. Brake Link Data Analyzed

Date/File/Time	Sustained Oscillation	Axle	Harmonic Content	Strain Change
June 16–File 18 - 375	No	Trail	No	Tension
June 18–File 24 - 310	No	Lead	No	Compression
June 18–File 24 - 580	Yes	Lead	Yes	Compression
June 17–File 25 - 559	Yes	Lead	Yes	Compression

Table K.3. Summary Of Brake Link Strains

Date/File/Time	Sustained Oscillation	Axle	Left Link Microstrain	Right Link Microstrain
June 16–File 18 - 375	No	Trail	+130	+21
June 18–File 24 - 310	No	Lead	-32	-231
June 18–File 24 - 580	Yes	Lead	-32	-221
June 17–File 25 - 559	Yes	Lead	-17	-189

Appendix L. Daily Handouts

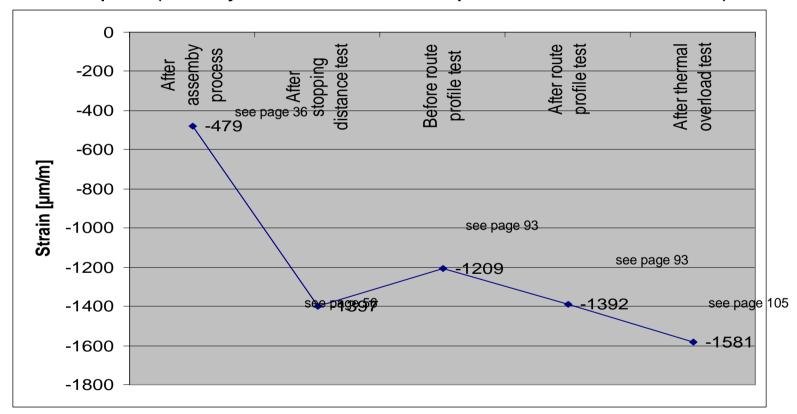
Handouts provided during each test are available on CD-ROM upon request. Please direct requests to the following:

ENSCO, Inc. ATE Division 5400 Port Royal Road Springfield, VA 22151

Telephone: 703-321-4475

Appendix M. Background of the WABTEC/SAB-WABCO Supplied Brake Disc

(Prepared by Faiveley Transport)


Residual Compressive Stresses in Spokes

- Compressive stresses level in used disc defined by assembly process of disc on axle and due to shrinking effects of friction ring caused by yielding in friction surface
- The compressive stress caused by the assembly process depends on the interference fit between axle and hub
- The compressive stress caused by the shrinking of the friction ring depends on the overall temperature level as well as on the differences in the friction surface e.g. caused by hot spots
- The overall compressive stress level stabilizes during service before yielding point

Residual Compressive Stresses in Spokes

 Example for the development of compressive strains based on the measurement at the spoke during dynamometer test at Faiveley Transport (see dynamometer test report V/V98-101-Rev00)

Note: Increase after stopping distance test and start of route possibly caused by external influences (temperature @ measurement, slight shifting in strain gauge, etc.)

Design Principle

- The principle design consideration for the brake disc was the high thermal load resistance of the monoblock disc as required by the specification. The design of the Acela monoblock brake disc and especially the spoke design had to be adapted to this requirement.
- The basis for this design option is the fact that the thermal expansion of the friction ring is related to a certain dimension.
- The basis for this design option is the fact that the thermal expansion of the friction ring and the loads on the spokes are related to certain dimension, i.e. the elongation of the spoke is defined by the geometrical value of the expansion of the friction ring.
- The elongation of the spoke is defined by the geometrical value of the expansion. Therefore the stress level in the spoke from thermal expansion depends directly on the length of the spoke.
- To resist the high thermal requirement the spokes length has been increased to reduced the stress level caused by the thermal expansion of the friction ring.
- By increasing the spoke length, the stress level in the spoke could be reduced significantly against a more rigid fixing of the spoke e.g. at the inner diameter of the friction ring.
- To support the minor influence of the specified lateral shocks, a web has been applied to the spoke in lateral direction to increase the stiffness against the specified lateral shock.
- To increase the strength and resistance a tempered cast steel material has been
- 3 chosen as the brake disc material.

Neller/VTA

Design Principle

Theoretical background for stress level by thermal expansions

$$\varepsilon = \Delta I / I_0$$

where:

 ε = strain at the spoke

I₀ = "normal" spoke length

 ΔI =elongation of the spoke by thermal expansion of the friction ring

$$\sigma = \varepsilon * E$$

where:

 σ = nominal stress level in spoke

 ε = strain at the spoke

E =modulus of elasticity

- The length, size and the connection of the spoke to the friction has a significant influence on the overall tensile stress level caused by thermal expansion because the elongation of the spoke is geometrical defined by expansion of the friction ring.
- For example a spoke with approx. 25% shorter length would lead to at least 40% more strains caused by thermal loads

Design verification process

- The brake disc design has been validated by a theoretical and practical approach utilizing common tools, such as the FEA calculation, dynamometer tests, vehicle test, etc.
- A first preliminary internal FEA calculation was completed in 1996 for the initial design discussion for the Acela axle mounted disc. After the internal reviews of this design, comments led to a revision of the design and an updated FEA calculation in 1997. The revised and updated FEA calculation was summarized in a final report (see document V/A97-092 Rev00) and formed the basis for the final proposal for the disc design. Based on this proposal the design was been jointly accepted.
- The evaluation of the FEA has been realized acc. to Smith, Watson and Topper by applying an S/N-curve and the corresponding damaging factor P_{SWT}. The evaluation of the FEA shows no indication for concern even under the assumed unrealistic scenarios.
- The dynamometer test simulated various load conditions such as the route profile under service load condition and continuously overload conditions. Also the dynamometer test shows no indication for concern even under the applied overload conditions.
- A vehicle testing has been performed confirming the results from the previous verification process and also here no indication for concern could be detected.
- Based on the verification process the disc has been jointly accepted for the use in the Acela vehicles.

TECHNICAL DEFINITIONS

	Definition
Cant Deficiency	For a train traveling through curved track at a given speed, the cant deficiency is the additional height that the elevated rail would have to be raised in order to produce a condition in which there is no net lateral force exerted on the rail.
Decibels	A unit for expressing the ratio of two amounts of electric or acoustic signal power equal to 10 times the common logarithm of this ratio
Truck/Bogie	Swiveling carriage consisting of a frame, two pairs of wheels and a collection of springs used to carry and guide one end of a railroad car during navigating over railroad tracks

ACRONYMS AND ABBREVIATIONS

	Acronym and Abbreviation			
Amtrak	National Passenger Railroad Administration			
Axle 1	Test axle with the WABTEC/SAB-WABCO supplied discs on Coach 3413; Axle 1 on A-end truck adjacent to Power Car 2038			
Axle 2	Test axle with the Knorr discs on Coach 3534; Axle 4 on B-end truck adjacent to Coach 3413			
BIP	Bending of spokes in-the-plane of the disc			
ВОР	Bending of spokes out-of-the-plane of the disc			
DB	Decibels			
°F	Temperature measured in degrees Fahrenheit			
$\mathbf{F_1}$	Strain Gage in plane face of spoke facing Spoke 1			
F ₂	Strain Gage in plane face of spoke facing Spoke 5			
Faiveley	Faiveley Transport			
FEA	Finite element analysis			
FRA	Federal Railroad Administration			
g	Acceleration of gravity			
GPS	Global Positioning System			
IR	Infrared			
Knorr	Knorr Brake Corporation			
MP&E	Motive power and equipment			
MPH, mph	Miles per hour			
MTI	Metallurgical Technologies, Inc., P.A.			
NEC	Northeast Corridor			
NECMSC	Northeast Corridor Maintenance Services Company			
PSD	Power Spectral Density; describes how the variance, or power, of a time series is distributed as a function of the different frequencies that form the signal			
PSI, psi	Pounds per square inch			
\mathbf{R}_1	Strain Gage on out of plane face of spoke 6 (nut side)			
R_2	Strain Gage on out of plane face of spoke 6 (opposite nut side)			
SO	Sustained Oscillation			
Spoke Number	Spoke naming convention			
E	Strain			
W/S-W	WABTEC/SAB-WABCO Supplied			
Wabtec	Wabtec Corporation			
μΕ, με	Microstrain - Strain times 10 ⁶			